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Who

Beyer et al. (2019):

Meller et al. (2019):



Oncology endpoints:

Progression-free survival (PFS): Time from randomization to earlier of

progression or death.

Overall survival (OS): Time from randomization to death.

PFS common surrogate for OS in clinical trials.



Multistate models



Canonical extension of survival analysis

Event−
free

PD or deathλ01(t)



Canonical extension of survival analysis
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Multistate models

Multistate model:

1-1 correspondence hazard - probability breaks down.

Transition probabilities: (Markov) process X (t)t≥0 with state space {0, 1, 2} =

{event-free, progression, death}. Then,

Plj (s, t) := P(Xt = j |Xs = l ,Past).

Estimate Plj ’s nonparametrically by Aalen-Johansen estimator.

OS: Aalen-Johansen offers higher precision compared to simple Kaplan-Meier

estimate, Andersen et al. (1993) (p. 315 and Fig. IV.4.16).

Markov assumption stronger than what is needed for Kaplan-Meier though.



Multistate model for PFS and OS

Event
free

PD

Death

λ01(t) λ12(t)

λ02(t)

Standard illness-death model without recovery:

Process X (t) ∈ {0, 1, 2}, t ≥ 0 models the state occupied at time t.

All patients in state 0 at time 0: P(X (0) = 0) = 1.

PFS: waiting time in initial state 0, PFS = inf{t : X (t) 6= 0}.

OS: time until reaching state 2, OS = inf{t : X (t) = 2}.



Prediction in multistate models

Rates (hazards, intensities):

Modelling of effects of covariates on transition hazards.

Hazard ratios (HR) from Cox regression.

Transition probabilities look at cumulative effects:

Effects on transition probabilities may be different from what HRs suggest.

Intermediate events in multistate model also contribute to cumulative effects.

How to estimate such cumulative effects?

Prediction from multistate model!



Multistate models for
early decision-making



How do we typically decide whether
to move an oncology molecule

into Phase 3?



Decision-making in early oncology development

1 Small single-arm trial for experimental drug (e.g. n = 40).

2 Response proportion, duration of response.

3 Compare to “corresponding” quantities from literature for control treatment.

But:

P(wrong decision) may be high.

Primary endpoint in Phase 3: Overall survival.



Proposal:

Decide in early phase based
on OS prediction.

Decrease P(wrong decision).



Challenges and proposal

Challenges:

1 Response-type endpoint?

2 Surrogacy? Poor in many indications.

3 Immunotherapy (CIT): no effect on response, relevant OS effect.

4 Non-randomized comparison ⇒ confounding.

Proposal: Base decision-making on OS prediction from multistate model.

1 Predicted survival function for experimental arm.

2 Combine Sexp with Scontrol to get predicted OS HR.

3 Experimental drug might act on certain transitions only ⇒ not captured through

simple modelling of OS. Potential efficiency gain!

4 Propensity scoring.



Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

Atezolizumab Chemotherapy Hazard ratio

Effect post-PD expected not expected

Objective Response 58 (13.6%) 57 (13.4%)

Duration of Response 26.3 (10 - ∞) 6.2 (4.9 - 7.6)

Overall Survival 0.73 (0.62, 0.87)



Idealized scenario: Retrospective data
from Phase 3 RCTs.

Long-term follow-up in both arms.

Randomization ⇒ no confounding.



Multistate model for early decision-making

λ24(t)

λ23(t)

λ12(t)

λ14(t)

λ13(t)
λ34(t)

Response (R)

Stable Disease (SD) Death (D)

Progression (PD)

Follow-up of patient until PD or death without PD, at least for 6 months.

Post-progression hazard λ34: borrowing from historical data.

Transitions SD → D, R → D rare, hazards ≈ same in both arms.

Markov assumption.



Predicted survival function in experimental arm, Sexp

Compute transition probabilities for each transition.

Sexp(t) = 1−
(
PSD→D(0, t) + PSD→PD→D(0, t) +

PSD→R→D(0, t) + PSD→R→PD→D(0, t)
)
.

λ34 corresponding to PD→ D transition borrowed from historical data.



How to compute transition probabilities?

Rigorously, Section A.2.5. in Aalen et al. (2008):

Write down transition intensity matrix.

Solve Kolmogorov forward equation.

Informal and intuitively:

P1→4(0, t) =

∫ t

0
P11(0, u)λ14(u)P44(u, t)du.

P11(0, u): probability to remain in State 1 from 0 to u.

At u patient transitions to State 4 with intensity λ14(u).

Remains in State 4 until t.

State 4 (= death) absorbing ⇒ P44(u, t) ≡ 1.

P1→4(0, t) =

∫ t

0
exp
(
−Λ12(u)− Λ13(u)− Λ14(u)

)
λ14(u)du.



Historical borrowing for λ34

Experimental treatment expected to provide benefit beyond PD?

No:

E.g. chemotherapy or antibody-dependent cellular cytotoxicity.

Plug-in hazard function estimate from historical control.

No post-PD information required for experimental arm.

Yes:

E.g. chemoimmunotherapy.

Estimate post-PD hazard ratio assuming proportionality.

How much post-PD deaths needed in experimental arm to reliably estimate

post-PD HR?



Benefit beyond PD: Oak



Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

Atezolizumab Chemotherapy Hazard ratio

Effect post-PD expected not expected

Objective Response 58 (13.6%) 57 (13.4%)

Duration of Response 26.3 (10 - ∞) 6.2 (4.9 - 7.6)

Overall Survival 0.73 (0.62, 0.87)



If this were early phase data -
would you initiate Phase 3?

Competitors used this
mechanism of action.



OS prediction when post-PD hazards assumed proportional

Random variable:

Z =

 0 if patient in control,

1 if in experimental group.

λ34(t |Z) = λ34,0(t) exp(β34Z)

Baseline hazard λ34,0 estimated from both arms combined.

Post-progression hazard ratio β34?



Oak: raw cumulative hazard estimates (of interest)
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Oak: raw cumulative hazard estimates (of interest)
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Oak: estimates / predictions of Sexp
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Early phase decision based on
multistate prediction:

P(wrong decision)?



OS prediction from mimicked early phase data

Historical control: Oak control arm data.

False-positive decision: Sample early phase trial from Oak control arm.

False-negative decision: Sample early phase trial from Oak experimental arm.

Sample early phase trial:

40 patients,

6 months uniform recruitment,

analysis 15 months after first patient entered,

censor post-PD follow-up one day after PD,

estimate λ12, λ13, λ14, λ23, λ24 from this data.

Cox regression for post-PD transition ⇒ λ̂34(t|Z).

Compute prediction of Sexp.



OS HR prediction based on early phase trial

Approximate HR by fitting exponential distribution to both arms ⇒ ĤR.

Decision to move to Phase 3: ĤR ≤ boundary ∈ {0.80, 0.85, 0.90, 1.00}.

Repeat 1000 times.

Resampling ⇒ quantification of uncertainty.



Oak: P(wrong decision)
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How many post-PD deaths to
estimate HR of PD → death transition?

Ask during Q&A.



Conclusions for early-decision making proposal



Conclusions

Early phase decision-making based on multistate OS prediction:

Assumption on λ34 ⇒ need to understand disease and treatment.

Avoids difficulty in interpretation of response-type endpoints.

Feasibility assessed in idealized scenario.

Recommendation how much post-PD follow-up needed to estimate β34.

Needs long-term individual-patient data in control arm!



What about confounding?

Real-world data as historical control.

Combine proposal with propensity scoring.



Conclusions



Multistate models

Multistate models useful:

Canonical extension of survival analysis.

Get more insight in how disease and drug work.

Prediction in well-specified, as opposed to black-box, model.

Jointly model three key oncology endpoints: response, PFS, OS.

Applications by no means restricted to oncology!

Many potential applications:

Improved early stage decision-making ⇒ Beyer et al. (2019).

Improved communication of effect and optimized sample size computation.

Bivariate modelling of PFS and OS to help inform surrogacy questions ⇒
Meller et al. (2019).



Thank you for your attention.

kaspar.rufibach@roche.com

http://www.kasparrufibach.ch
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Backup



PFS - OS



Multistate vs. latent failure time model

Fleischer et al. (2009), Li and Zhang (2015): LFTM with uncheckable and

questionable (unrealistic?) independence assumption.

Parametric models: formula for SPFS identical for all three models below, and

Time-homogeneous Markov, Exponential: model so simple that @
time-inhomogeneous Markov process. SOS identical to Exponential LFTM.

Time-homogeneous Markov, Weibull: formula for SOS identical to Weibull

LFTM ⇒ are model assumptions equivalent? No!

Time-inhomogeneous Markov, Weibull: formulas for SOS are different.

BUT: values of estimated parameters differ between LFTM and multistate for all

three parametric models, as likelihoods differ!

Not clear (?) how to nonparametrically estimate LFTM ⇒ possible for (Markov)

multistate.



Assumptions for multistate model



Assumptions for multistate model

Multistate model sufficiently smooth so that following intensities exist:

α0j (t) = lim
∆t↘0

P(PFS ∈ [t, t + ∆t),X (PFS) = j |PFS ≥ t)

∆t
, j = 1, 2,

α12(t; t1) = lim
∆t↘0

P(X (t + ∆t) = 2 |X (t−) = 1,PFS = t1)

∆t

= lim
∆t↘0

P(OS− PFS ∈ [t − t1, t − t1 + ∆t) |OS ≥ t,PFS = t1)

∆t
for t1 < t.

t1: observed PFS time, i.e. time when leaving state 0.



Assumptions for multistate model

X (t) Markov:

Time-inhomogeneous: intensity of death after progression does not depend on

time of progression, α12(t; t1) = α12(t) for all t1 < t.

Homogeneous: intensities are time-constant, i.e. Exponential,

αij (t) = αij , i , j = 0, 1, 2.

X (t) non-Markov (= semi-Markov for illness-death model without recovery):

Intensities depend on state patient is in at s and entire history ≤ s, i.e. all

transitions.

Relevant for 1→ 2 transition only, as 0→ 1, 2 are rooted in initial state 0.

As soon as a quantity depends on 1→ 2 transition we need to be specific about

assumption on X (t).



Illness-death multistate model for PFS and OS

Transition probabilities to move from state l at time s to state m at time t:

Plm(s, t) := P(X (t) = m|X (s) = l , history).

Illness-death model w/o recovery, Plm as functions of transition intensities,

Aalen et al. (2008):

P00(s, t) = exp

(
−
∫ t

s
α01(u) + α02(u) du

)
,

P11(s, t; t1) = exp

(
−
∫ t

s
α12(u; t1) du

)
,

P22(s, t) = 1,

P01(s, t) =

∫ t

s
P00(s, u−)α01(u)P11(u, t; u) du,

P12(s, t; t1) = 1− P11(s, t; t1),

P02(s, t) = 1−
(
P00(s, t) + P01(s, t)

)
.

If X (t) non-Markov:

P11 and P12 depend on PFS time t1.

Although P01,P02 depend on α12 they do not depend on t1.



Intuition behind transition probabilities

P00(s, t), P11(s, t; t1): exp of cumulative hazards ⇒ standard survival functions.

P01(s, t) =
∫ t
s P00(s, u−)α01(u)P11(u, t; u) du: integral of

P00(s, u−)α01(u): “infinitesimal probabilities” to move from 0 to 1 at time u,

u ∈ (s, t],

P11(u, t; u): subsequently stay in state 1 until at least time t, with progression

happened in u.



Illness-death multistate model for PFS and OS

Marginal distributions:

SPFS (t) = P(PFS > t) = P00(0, t),

SOS (t) = P(OS > t) = P00(0, t) + P01(0, t),

Joint distribution:

P(PFS ≤ u,OS ≤ v) = P(X (u) ∈ {1, 2},X (v) = 2)

= P(X (u) = 1,X (v) = 2) + P(X (u) = 2)

= P(X (v) = 2|X (u) = 1) · P(X (u) = 1|X (0) = 0)

+P(X (u) = 2|X (0) = 0)

= P(X (v) = 2|X (u) = 1) · P01(0, u) + P02(0, u).

X inhomogeneous Markov: P(X (v) = 2|X (u) = 1) = P12(u, v) independent of

progression time t1 ≤ u.

X non-Markov: integrate P12(u, v ; t1) over conditional distribution of all possible

progression times t1 ≤ u ⇒ final formula tedious.



Results: SOS for Exponential
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Results: SOS for Weibull
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Results: correlations Exponential

Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.



Results: correlations Weibull

Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.



Results: CLEOPATRA, Baselga and Cortes (2012).

Weibull Nonparametric

Exponential Weibull Markov Markov

Corr(PFS, OS) 0.611 0.643 0.483 0.450

95% Bootstrap CI [0.541; 0.673] [0.584; 0.699] [0.342; 0.643] [0.297; 0.655]

Table: Correlation between PFS and OS in CLEOPATRA (1000 bootstrap samples).



Early decision-making



How many post-PD deaths needed?

Assumption:

λ34(t |Z) = λ34,0(t) exp(β34Z).

How many post-PD deaths needed in experimental arm to reliably estimate λ34?

Planning stage: only data for control arm are available.

Fit multistate model to control data.

Assume transition-specific hazard ratios corresponding to clinically meaningful

OS effect.

Simulate.

Various scenarios for post-PD follow-up time.



Simulation details – mimick Oak

NOT power computation for hypothesis test – sample size too small anyway.

Rather: find cutoff timepoint from which on OS HR estimate remains stable.

Simulate 40 patient from experimental arm as before.
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Resulting OS HR = 0.73. Close to Oak OS HR.

Follow-up post-PD for experimental arm truncated at 30, 60, 90, 120, 150, 180

and 240 days after recruitment.

Repeat 1000 times.



Stability of hazard ratio estimate
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180-240 days sufficient to obtain stable point estimate over time.

Typical early phase follow-up: Post-PD deaths censored 180 days after recruitment in

experimental arm.



Example 1: Cleopatra



Cleopatra

Baselga and Cortes (2012), Swain and Baselga (2015).

Previously untreated HER2-positive metastatic breast cancer patients.

Pertuzumab+Trastuzumab Trastuzumab HR (95% CI)

Survival N=402 N=406

Overall Survival 0.64

(0.47,0.88)

Progression-free Survival 0.62 (0.51,0.75)

Response N=343 N=336

Objective Response 275 (80.2%) 233 (69.3%)

Stable Disease 50 (14.6%) 70 (20.8%)

Progressive Disease 13 (3.8%) 28 (8.3%)

Duration of Response N=275 N=233

Median (months, 95% CI) 20.2 (16.0,24.0) 12.5 (10.0-15.0)

Moderate difference in response.

Prolonged duration of response in experimental arm.

Clear OS benefit.

Experimental treatment induces antibody-dependent cellular cytotoxicity ⇒ no

benefit beyond PD expected ⇒ λ34 same in both arms.



Cleopatra: raw cumulative hazard estimates (of interest)
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Cleopatra: estimates / predictions of Sexp 
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Conclusions for Cleopatra

For estimated / predicted survival function in experimental arm, based on all data:

Majority of patients dies after observed PD.

KM estimate of simply censoring post-PD deaths does not work ⇒ very few

deaths observed.

Multistate model prediction assuming post-PD hazards as in control provides

good prediction.



Early phase decision based on
multistate prediction:

Operating characteristics?



OS prediction from mimicked early phase data

Sample early phase trial from Cleopatra experimental arm:

40 patients,

6 months uniform recruitment,

analysis 15 months after first patient entered,

censor post-PD follow-up one day after PD,

estimate λ12, λ13, λ14, λ23, λ24 from this data,

borrow λ̂34 from historical data = Cleopatra control arm in idealized scenario,

compute prediction of Sexp as described above.



Resampling of operating characteristics

Setup:

Use all data in control arm ⇒ corresponds to historical control.

False-positive decision: Sample early phase trial from Cleopatra control arm.

False-negative decision: Sample early phase trial from Cleopatra experimental

arm.

Approximate HR by fitting exponential distribution to both arms ⇒ ĤR.

Decision to move to Phase 3: ĤR ≤ boundary ∈ {0.80, 0.85, 0.90, 1.00}.

Repeat 1000 times.

Resampling easily allows for quantification of uncertainty.



Cleopatra: operating characteristics

Sampled from experimental and control arm.



Cleopatra: operating characteristics
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Decision based on response: ≈ 10% difference, some prolongation of DOR ⇒ moved

to Phase 3.



Cleopatra: cumulative hazards of secondary interest
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Oak

Previously treated non-small-cell lung cancer. Rittmeyer et al. (2017).

Control: no benefit post-PD expected.

Experimental: CIT ⇒ benefit post-PD expected.

Atezolizumab Chemotherapy HR (95% CI)

Survival N=425 N=425

Overall Survival 0.73 (0.62,0.87)

Progression-free Survival 0.95 (0.82,1.10)

Response N=425 N=425

Objective Response 58 (13.6%) 57 (13.4%)

Stable Disease 150 (35%) 177 (42%)

Progressive Disease 187 (44%) 117 (28%)

Duration of Response N=58 N=57

Median (months, 95% CI) 26.3 (10,NE) 6.2 (4.9-7.6)

No observed difference in response.

Prolonged duration of response in experimental arm.

Clear survival benefit.



Oak: cumulative hazards of secondary interest
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Oak: operating characteristics

Sampled from experimental and control arm.



Non-proportional hazards via multistate model



Immunotherapy:
1) no difference in PFS,

2) non-proportional hazards for OS.

How to quantify effect?



A fictional clinical trial

Simulated clinical trial:

1:1 randomized, 400 and 400 patients per arm.

No administrative censoring, but drop-out.



PFS for simulated clinical trial
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Estimated hazard ratio: 0.94, 95% confidence interval [0.80, 1.11].

Hypothesis test for PH: p = 0.24.



OS for simulated clinical trial
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Estimated hazard ratio: 0.61, 95% confidence interval [0.50, 0.74].

Hypothesis test for PH: p < 0.0001.



Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition Control arm Treatment arm

0→ 1 λc01 = log(2)/25 λt01 = λc01 · 1
0→ 2 λc02 = log(2)/30 λt02 = λc02 · 0.8
1→ 2 λc12 = log(2)/15 λt12 = λc12 · 0.4

coef HR = exp(coef) 95% CI p-value

transition event-free –> PD -0.04 0.96 [0.77, 1.19] 0.72
transition event-free –> death -0.09 0.91 [0.70, 1.18] 0.49
transition PD –> death -1.09 0.34 [0.24, 0.46] < 0.0001

Gaschler-Markefski et al. (2014).



R version and packages used to generate these slides:

R version: R version 4.0.3 (2020-10-10)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr /

mvna / prodlim / biostatKR / survival
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