Use of multistate models to improve decision-making in clinical trials

Kaspar Rufibach Methods, Collaboration & Outreach Group, Department of Biostatistics, Roche Basel Wiener Biometrische Sektion 9th December 2020

Generated 2020-12-09 at 10:41:51

Who

Beyer et al. (2019):

Meller et al. (2019):

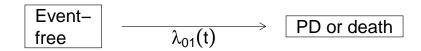
Oncology endpoints:

- Progression-free survival (PFS): Time from randomization to earlier of progression or death.
- Overall survival (OS): Time from randomization to death.

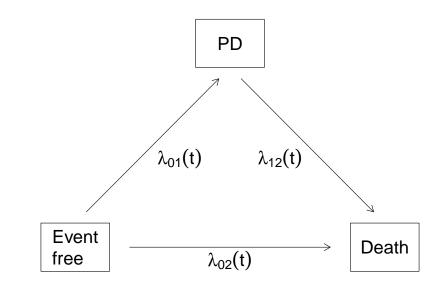
PFS common surrogate for OS in clinical trials.

Multistate models

Canonical extension of survival analysis



Canonical extension of survival analysis



Multistate models

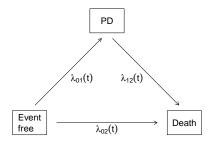
Multistate model:

- 1-1 correspondence hazard probability breaks down.
- Transition probabilities: (Markov) process $X(t)_{t\geq 0}$ with state space $\{0, 1, 2\} = \{$ event-free, progression, death $\}$. Then,

$$P_{lj}(s,t) := P(X_t = j | X_s = l, \text{Past}).$$

- Estimate *P_{lj}*'s nonparametrically by Aalen-Johansen estimator.
- OS: Aalen-Johansen offers higher precision compared to simple Kaplan-Meier estimate, Andersen et al. (1993) (p. 315 and Fig. IV.4.16).
- Markov assumption stronger than what is needed for Kaplan-Meier though.

Multistate model for PFS and OS



Standard illness-death model without recovery:

- Process X(t) ∈ {0,1,2}, t ≥ 0 models the state occupied at time t.
- All patients in state 0 at time 0: P(X(0) = 0) = 1.
- PFS: waiting time in initial state 0, $PFS = \inf\{t : X(t) \neq 0\}$.
- OS: time until reaching state 2, $OS = inf\{t : X(t) = 2\}$.

Prediction in multistate models

Rates (hazards, intensities):

- Modelling of effects of covariates on transition hazards.
- Hazard ratios (HR) from Cox regression.

Transition probabilities look at cumulative effects:

- Effects on transition probabilities may be different from what HRs suggest.
- Intermediate events in multistate model also contribute to cumulative effects.
- How to estimate such cumulative effects?

Prediction from multistate model!

Multistate models for early decision-making

How do we typically decide whether to move an oncology molecule into Phase 3?

Decision-making in early oncology development

- **(**) Small single-arm trial for **experimental** drug (e.g. n = 40).
- Response proportion, duration of response.
- Sompare to "corresponding" quantities from literature for control treatment.

But:

- P(wrong decision) may be high.
- Primary endpoint in Phase 3: Overall survival.

Proposal:

Decide in early phase based on OS prediction.

Decrease P(wrong decision).

Challenges and proposal

Challenges:

- Response-type endpoint?
- Surrogacy? Poor in many indications.
- Immunotherapy (CIT): no effect on response, relevant OS effect.
- **One-tandomized** comparison \Rightarrow confounding.

Proposal: Base decision-making on OS prediction from multistate model.

- **O** Predicted survival function for experimental arm.
- **2** Combine S_{exp} with $S_{control}$ to get predicted OS HR.
- ② Experimental drug might act on certain transitions only ⇒ not captured through simple modelling of OS. Potential efficiency gain!

Propensity scoring.

Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

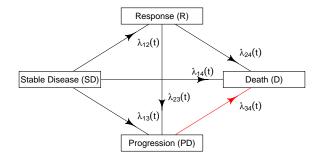
	Atezolizumab	Chemotherapy	Hazard ratio
Effect post-PD	expected	not expected	
Objective Response	58 (13.6%)	57 (13.4%)	
Duration of Response	26.3 (10 - ∞)	6.2 (4.9 - 7.6)	
Overall Survival			0.73 (0.62, 0.87)

Idealized scenario: Retrospective data from Phase 3 RCTs.

Long-term follow-up in both arms.

Randomization \Rightarrow **no confounding**.

Multistate model for early decision-making



- Follow-up of patient until PD or death without PD, at least for 6 months.
- Post-progression hazard λ_{34} : borrowing from historical data.
- $\bullet\,$ Transitions SD \to D, R \to D rare, hazards \approx same in both arms.
- Markov assumption.

Predicted survival function in experimental arm, S_{exp}

Compute transition probabilities for each transition.

$$S_{\exp}(t) = 1 - \left(P_{SD \to D}(0, t) + P_{SD \to PD \to D}(0, t) + P_{SD \to R \to D}(0, t) + P_{SD \to R \to PD \to D}(0, t)\right).$$

 λ_{34} corresponding to PD \rightarrow D transition borrowed from historical data.

How to compute transition probabilities?

Rigorously, Section A.2.5. in Aalen et al. (2008):

- Write down transition intensity matrix.
- Solve Kolmogorov forward equation.

Informal and intuitively:

$$P_{1\to 4}(0,t) = \int_0^t P_{11}(0,u)\lambda_{14}(u)P_{44}(u,t)du.$$

- $P_{11}(0, u)$: probability to remain in State 1 from 0 to u.
- At u patient transitions to State 4 with intensity $\lambda_{14}(u)$.
- Remains in State 4 until t.
- State 4 (= death) absorbing $\Rightarrow P_{44}(u, t) \equiv 1$.

$$P_{1\rightarrow 4}(0,t) = \int_0^t \exp\left(-\Lambda_{12}(u) - \Lambda_{13}(u) - \Lambda_{14}(u)\right) \lambda_{14}(u) du.$$

Historical borrowing for λ_{34}

Experimental treatment expected to provide benefit beyond PD?

No:

- E.g. chemotherapy or antibody-dependent cellular cytotoxicity.
- Plug-in hazard function estimate from historical control.
- No post-PD information required for experimental arm.

Yes:

- E.g. chemoimmunotherapy.
- Estimate post-PD hazard ratio assuming proportionality.
- How much post-PD deaths needed in experimental arm to reliably estimate post-PD HR?

Benefit beyond PD: Oak

Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

	Atezolizumab	Chemotherapy	Hazard ratio
Effect post-PD	expected	not expected	
Objective Response	58 (13.6%)	57 (13.4%)	
Duration of Response	26.3 (10 - ∞)	6.2 (4.9 - 7.6)	
Overall Survival			0.73 (0.62, 0.87)

If this were early phase data would you initiate Phase 3?

Competitors used this mechanism of action.

OS prediction when post-PD hazards assumed proportional

Random variable:

$$Z = \begin{cases} 0 & \text{if patient in control,} \\ 1 & \text{if in experimental group.} \end{cases}$$

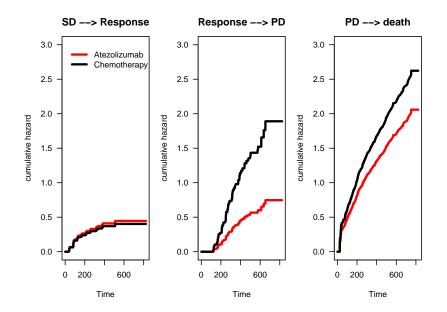
$$\lambda_{34}(t \,|\, Z) \;=\; \lambda_{34,0}(t) \exp(eta_{34} Z)$$

Baseline hazard $\lambda_{34,0}$ estimated from both arms combined.

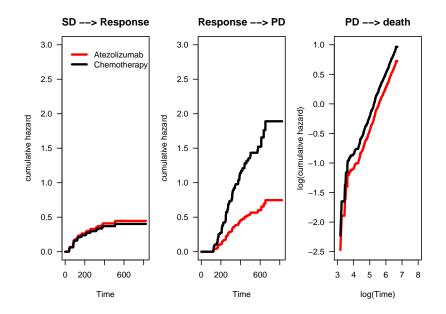
1

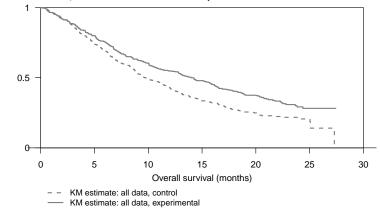
Post-progression hazard ratio β_{34} ?

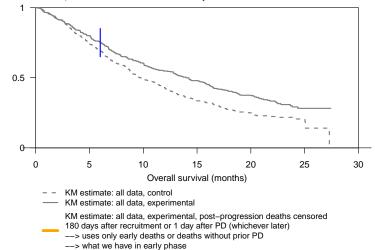
Oak: raw cumulative hazard estimates (of interest)

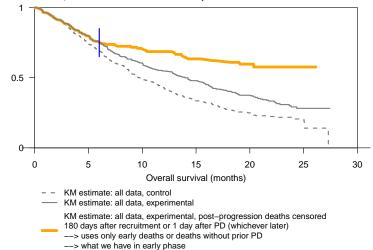


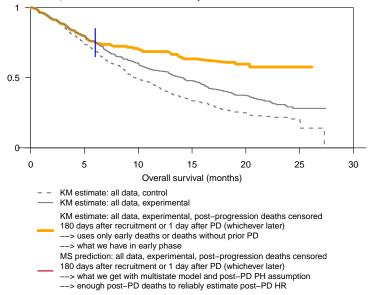
Oak: raw cumulative hazard estimates (of interest)

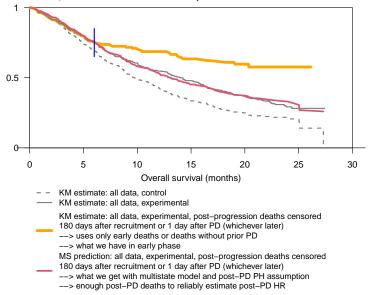












Early phase decision based on multistate prediction:

P(wrong decision)?

OS prediction from mimicked early phase data

Historical control: Oak control arm data.

False-positive decision: Sample early phase trial from Oak control arm. **False-negative** decision: Sample early phase trial from Oak experimental arm.

Sample early phase trial:

- 40 patients,
- 6 months uniform recruitment,
- analysis 15 months after first patient entered,
- censor post-PD follow-up one day after PD,
- estimate $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{23}, \lambda_{24}$ from this data.

Cox regression for post-PD transition $\Rightarrow \widehat{\lambda}_{34}(t|Z)$.

Compute prediction of S_{exp} .

OS HR prediction based on early phase trial

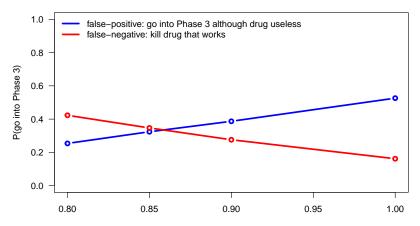
Approximate HR by fitting exponential distribution to both arms $\Rightarrow \widehat{HR}$.

Decision to move to Phase 3: $\widehat{HR} \leq \text{boundary} \in \{0.80, 0.85, 0.90, 1.00\}.$

Repeat 1000 times.

Resampling \Rightarrow **quantification of uncertainty**.

Oak: P(wrong decision)



hazard ratio decision boundary

How many post-PD deaths to estimate HR of PD \rightarrow death transition?

Ask during Q&A.

Conclusions for early-decision making proposal

Conclusions

Early phase decision-making based on multistate OS prediction:

- Assumption on $\lambda_{34} \Rightarrow$ need to understand disease and treatment.
- Avoids difficulty in interpretation of response-type endpoints.
- Feasibility assessed in idealized scenario.
- Recommendation how much post-PD follow-up needed to estimate β_{34} .
- Needs long-term individual-patient data in control arm!

What about confounding?

Real-world data as historical control.

Combine proposal with propensity scoring.

Conclusions

Multistate models

Multistate models useful:

- Canonical extension of survival analysis.
- Get more insight in how disease and drug work.
- Prediction in well-specified, as opposed to black-box, model.
- Jointly model three key oncology endpoints: response, PFS, OS.
- Applications by no means restricted to oncology!

Many potential applications:

- Improved early stage decision-making \Rightarrow Beyer *et al.* (2019).
- Improved communication of effect and optimized sample size computation.
- Bivariate modelling of PFS and OS to help inform surrogacy questions ⇒ Meller *et al.* (2019).

Thank you for your attention.

kaspar.rufibach@roche.com http://www.kasparrufibach.ch y numbersman77 o numbersman77

References I

- Aalen, O., Borgan, Ø., and Gjessing, H. (2008). Survival and event history analysis: a process point of view. Springer Science & Business Media.
- Aalen, O. O. (1987). Dynamic modelling and causality. Scandinavian Actuarial Journal, 1987(3-4), 177–190.
- Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for non-homogeneous markov chains based on censored observations. *Scandinavian Journal of Statistics*, 5(3), 141–150.
- Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer.
- Baselga, J. and Cortes, J. et. al. (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 366(2), 109–119.
- Beyer, U., Dejardin, D., Meller, M., Rufibach, K., and Burger, H. U. (2019). A multistate model for early decision making in oncology. *Biom J, to appear*.
- Beyersmann, J., Allignol, A., and Schumacher, M. (2012). Competing Risks and Multistate Models with R. Springer.
- Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., and Renard, D. (2001). Validation of surrogate end points in multiple randomized clinical trials with failure time end points. *Journal* of the Royal Statistical Society: Series C (Applied Statistics), 50(4), 405–422.

References II

- Buyse, M., Molenberghs, G., Paoletti, X., Oba, K., Alonso, A., Van der Elst, W., and Burzykowski, T. (2016). Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. *Biom J*, 58(1), 104–132.
- Emura, T., Nakatochi, M., Murotani, K., and Rondeau, V. (2017). A joint frailty-copula model between tumour progression and death for meta-analysis. *Stat Methods Med Res*, 26(6), 2649–2666.
- Fleischer, F., Gaschler-Markefski, B., and Bluhmki, E. (2009). A statistical model for the dependence between progression-free survival and overall survival. *Stat. Med.*, 28(21), 2669–2686.
- Fu, H., Wang, Y., Liu, J., Kulkarni, P. M., and Melemed, A. S. (2013). Joint modeling of progression-free survival and overall survival by a Bayesian normal induced copula estimation model. *Stat Med*, **32**(2), 240–254.
- Gaschler-Markefski, B., Schiefele, K., Hocke, J., and Fleischer, F. (2014). Multi-state Models Used in Oncology Trials, pages 283–304. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Li, Y. and Zhang, Q. (2015). A Weibull multi-state model for the dependence of progression-free survival and overall survival. *Stat Med*, 34(17), 2497–2513.
- Meller, M., Beyersmann, J., and Rufibach, K. (2019). Joint modeling of progression-free and overall survival and computation of correlation measures. *Statistics in medicine*, 38, 4270–4289.

References III

- Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., Von Pawel, J., Gadgeel, S. M., Hida, T., Kowalski, D. M., Dols, M. C., *et al.* (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. *The Lancet*, **389**(10066), 255–265.
- Swain, S. M. and Baselga, J. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 372(8), 724–734.
- Weber, E. M. and Titman, A. C. (2019). Quantifying the association between progression-free survival and overall survival in oncology trials using kendall's τ. Statistics in medicine, 38, 703–719.

Backup

PFS - OS

Multistate vs. latent failure time model

Fleischer *et al.* (2009), Li and Zhang (2015): LFTM with uncheckable and questionable (unrealistic?) independence assumption.

Parametric models: formula for S_{PFS} identical for all three models below, and

- Time-homogeneous Markov, Exponential: model so simple that ∄ time-inhomogeneous Markov process. S_{OS} identical to Exponential LFTM.
- Time-homogeneous Markov, Weibull: formula for S_{OS} identical to Weibull LFTM ⇒ are model assumptions equivalent? No!
- Time-inhomogeneous Markov, Weibull: formulas for S_{OS} are different.

BUT: values of estimated parameters differ between LFTM and multistate for all three parametric models, as likelihoods differ!

Not clear (?) how to nonparametrically estimate LFTM \Rightarrow possible for (Markov) multistate.

Assumptions for multistate model

Assumptions for multistate model

Multistate model sufficiently smooth so that following intensities exist:

$$\begin{split} \alpha_{0j}(t) &= \lim_{\Delta t \searrow 0} \frac{P(\text{PFS} \in [t, t + \Delta t), X(\text{PFS}) = j | \text{PFS} \ge t)}{\Delta t}, j = 1, 2, \\ \alpha_{12}(t; t_1) &= \lim_{\Delta t \searrow 0} \frac{P(X(t + \Delta t) = 2 | X(t -) = 1, \text{PFS} = t_1)}{\Delta t} \\ &= \lim_{\Delta t \searrow 0} \frac{P(\text{OS} - \text{PFS} \in [t - t_1, t - t_1 + \Delta t) | \text{OS} \ge t, \text{PFS} = t_1)}{\Delta t} \quad \text{for } \mathbf{t}_1 < \mathbf{t}. \end{split}$$

 t_1 : observed PFS time, i.e. time when leaving state 0.

Assumptions for multistate model

X(t) Markov:

- Time-inhomogeneous: intensity of death after progression does not depend on time of progression, α₁₂(t; t₁) = α₁₂(t) for all t₁ < t.
- Homogeneous: intensities are time-constant, i.e. Exponential, $\alpha_{ij}(t) = \alpha_{ij}, i, j = 0, 1, 2.$

X(t) non-Markov (= semi-Markov for illness-death model without recovery):

- Intensities depend on state patient is in at s and entire history ≤ s, i.e. all transitions.
- Relevant for $1 \rightarrow 2$ transition only, as $0 \rightarrow 1, 2$ are rooted in initial state 0.

As soon as a quantity depends on $1 \rightarrow 2$ transition we need to be specific about assumption on X(t).

Illness-death multistate model for PFS and OS

Transition probabilities to move from state *I* at time *s* to state *m* at time *t*:

$$P_{lm}(s,t) := P(X(t) = m | X(s) = l$$
, history).

Illness-death model w/o recovery, P_{lm} as functions of transition intensities, Aalen *et al.* (2008):

$$P_{00}(s,t) = \exp\left(-\int_{s}^{t} \alpha_{01}(u) + \alpha_{02}(u) \, \mathrm{d}u\right),$$

$$P_{11}(s,t;\mathbf{t}_{1}) = \exp\left(-\int_{s}^{t} \alpha_{12}(u;t_{1}) \, \mathrm{d}u\right),$$

$$P_{22}(s,t) = 1,$$

$$P_{01}(s,t) = \int_{s}^{t} P_{00}(s,u_{-})\alpha_{01}(u)P_{11}(u,t;u) \, \mathrm{d}u,$$

$$P_{12}(s,t;\mathbf{t}_{1}) = 1 - P_{11}(s,t;\mathbf{t}_{1}),$$

$$P_{02}(s,t) = 1 - \left(P_{00}(s,t) + P_{01}(s,t)\right).$$

If X(t) non-Markov:

- P_{11} and P_{12} depend on **PFS time** t_1 .
- Although P_{01} , P_{02} depend on α_{12} they do not depend on t_1 .

Intuition behind transition probabilities

 $P_{00}(s, t)$, $P_{11}(s, t; t_1)$: exp of cumulative hazards \Rightarrow standard survival functions.

 $P_{01}(s,t) = \int_{s}^{t} P_{00}(s,u_{-})\alpha_{01}(u)P_{11}(u,t;u) du$: integral of

- P₀₀(s, u_−)α₀₁(u): "infinitesimal probabilities" to move from 0 to 1 at time u, u ∈ (s, t],
- P₁₁(u, t; u): subsequently stay in state 1 until at least time t, with progression happened in u.

Illness-death multistate model for PFS and OS

Marginal distributions:

$$\begin{array}{lll} S_{PFS}(t) &=& P(\mathrm{PFS} > t) \;=\; P_{00}(0,t), \\ S_{OS}(t) &=& P(\mathrm{OS} > t) \;=\; P_{00}(0,t) + P_{01}(0,t), \end{array}$$

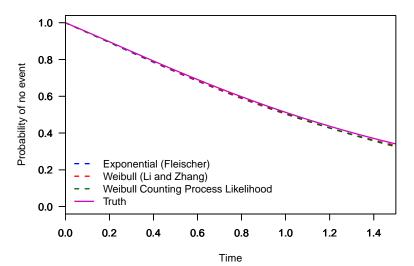
Joint distribution:

$$\begin{split} P(\mathrm{PFS} \leq u, \mathrm{OS} \leq v) &= P(X(u) \in \{1, 2\}, X(v) = 2) \\ &= P(X(u) = 1, X(v) = 2) + P(X(u) = 2) \\ &= P(X(v) = 2|X(u) = 1) \cdot P(X(u) = 1|X(0) = 0) \\ &+ P(X(u) = 2|X(0) = 0) \\ &= P(X(v) = 2|X(u) = 1) \cdot P_{01}(0, u) + P_{02}(0, u). \end{split}$$

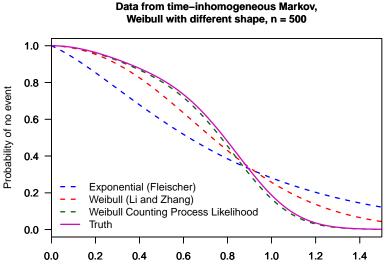
X inhomogeneous Markov: $P(X(v) = 2|X(u) = 1) = P_{12}(u, v)$ independent of progression time $t_1 \le u$.

X non-Markov: integrate $P_{12}(u, v; t_1)$ over conditional distribution of all possible progression times $t_1 \leq u \Rightarrow$ final formula tedious.

Results: S_{OS} for Exponential

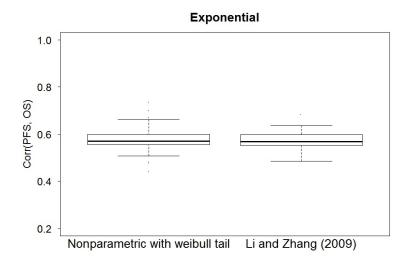


Results: S_{OS} for Weibull



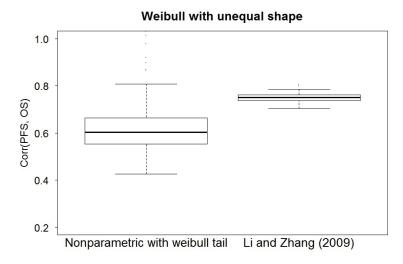
Time

Results: correlations Exponential



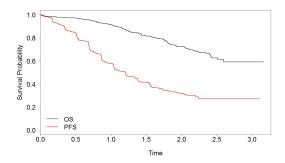
Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.

Results: correlations Weibull



Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.

Results: CLEOPATRA, Baselga and Cortes (2012).



			Weibull	Nonparametric	
	Exponential	Weibull	Markov	Markov	
Corr(PFS, OS)	0.611	0.643	0.483	0.450	
95% Bootstrap Cl	[0.541; 0.673]	[0.584; 0.699]	[0.342; 0.643]	[0.297; 0.655]	

Table: Correlation between PFS and OS in CLEOPATRA (1000 bootstrap samples).

Early decision-making

How many post-PD deaths needed?

Assumption:

$$\lambda_{34}(t \mid \mathsf{Z}) = \lambda_{34,0}(t) \exp(\beta_{34} \mathsf{Z}).$$

How many post-PD deaths needed in experimental arm to reliably estimate λ_{34} ?

Planning stage: only data for control arm are available.

- Fit multistate model to control data.
- Assume transition-specific hazard ratios corresponding to clinically meaningful OS effect.
- Simulate.

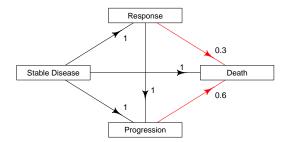
Various scenarios for post-PD follow-up time.

Simulation details – mimick Oak

NOT power computation for hypothesis test – sample size too small anyway.

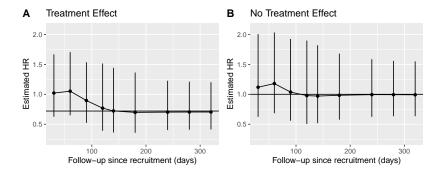
Rather: find cutoff timepoint from which on OS HR estimate remains stable.

• Simulate 40 patient from experimental arm as before.



- Resulting OS HR = 0.73. Close to Oak OS HR.
- Follow-up post-PD for experimental arm truncated at 30, 60, 90, 120, 150, 180 and 240 days after recruitment.
- Repeat 1000 times.

Stability of hazard ratio estimate



180-240 days sufficient to obtain stable point estimate over time.

Typical early phase follow-up: Post-PD deaths censored 180 days after recruitment in experimental arm.

Example 1: Cleopatra

Cleopatra

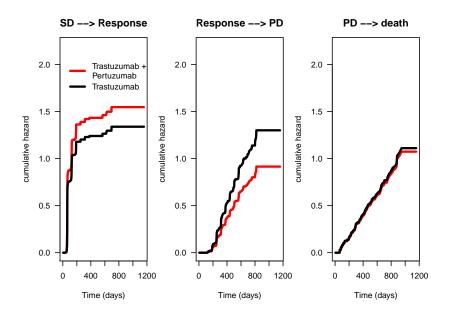
Baselga and Cortes (2012), Swain and Baselga (2015).

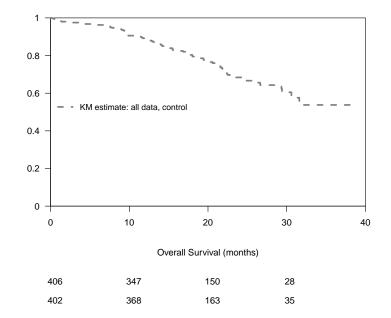
	Pertuzumab+Trastuzumab	Trastuzumab	HR (95% CI)
Survival	N=402	N=406	
Overall Survival			0.64
			(0.47,0.88)
Progression-free Survival			0.62 (0.51,0.75)
Response	N=343	N=336	
Objective Response	275 (80.2%)	233 (69.3%)	
Stable Disease	50 (14.6%)	70 (20.8%)	
Progressive Disease	13 (3.8%)	28 (8.3%)	
Duration of Response	N=275	N=233	
Median (months, 95% CI)	20.2 (16.0,24.0)	12.5 (10.0-15.0)	

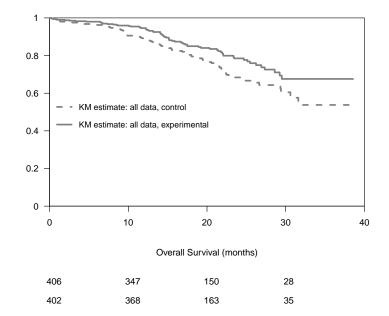
Previously untreated HER2-positive metastatic breast cancer patients.

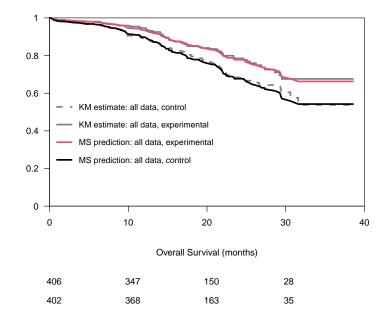
- Moderate difference in response.
- Prolonged duration of response in experimental arm.
- Clear OS benefit.
- Experimental treatment induces antibody-dependent cellular cytotoxicity \Rightarrow no benefit beyond PD expected $\Rightarrow \lambda_{34}$ same in both arms.

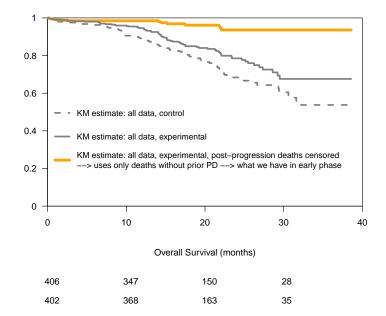
Cleopatra: raw cumulative hazard estimates (of interest)

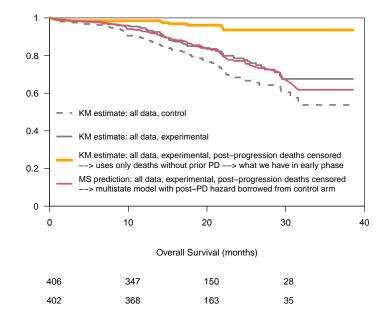












Conclusions for Cleopatra

For estimated / predicted survival function in experimental arm, based on all data:

- Majority of patients dies after observed PD.
- KM estimate of simply censoring post-PD deaths does not work ⇒ very few deaths observed.
- Multistate model prediction assuming post-PD hazards as in control provides good prediction.

Early phase decision based on multistate prediction:

Operating characteristics?

OS prediction from mimicked early phase data

Sample early phase trial from Cleopatra experimental arm:

- 40 patients,
- 6 months uniform recruitment,
- analysis 15 months after first patient entered,
- censor post-PD follow-up one day after PD,
- estimate $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{23}, \lambda_{24}$ from this data,
- borrow $\widehat{\lambda}_{34}$ from historical data = Cleopatra control arm in idealized scenario,
- compute prediction of S_{exp} as described above.

Resampling of operating characteristics

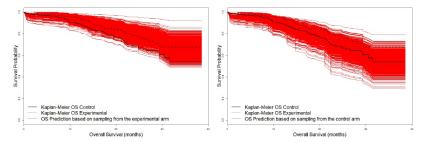
Setup:

- Use all data in control arm \Rightarrow corresponds to historical control.
- False-positive decision: Sample early phase trial from Cleopatra control arm.
- False-negative decision: Sample early phase trial from Cleopatra experimental arm.
- Approximate HR by fitting exponential distribution to both arms $\Rightarrow \widehat{HR}$.
- Decision to move to Phase 3: $\widehat{HR} \leq \text{boundary} \in \{0.80, 0.85, 0.90, 1.00\}.$
- Repeat 1000 times.

Resampling easily allows for quantification of uncertainty.

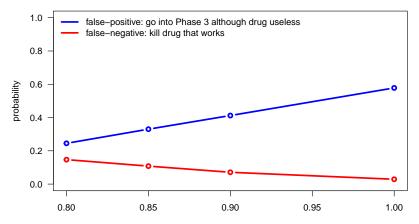
Cleopatra: operating characteristics

Sampled from experimental and control arm.



Cleopatra: operating characteristics

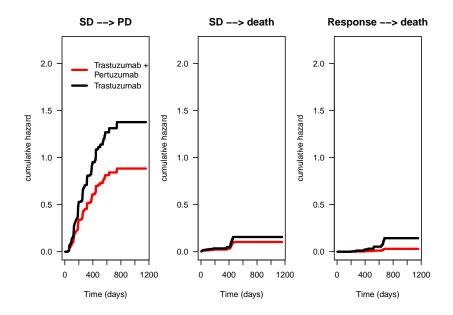
probability to go into Phase 3: P(approximated HR <= boundary)



hazard ratio decision boundary

Decision based on response: $\approx 10\%$ difference, some prolongation of DOR \Rightarrow moved to Phase 3.

Cleopatra: cumulative hazards of secondary interest



Oak

Previously treated non-small-cell lung cancer. Rittmeyer et al. (2017).

- Control: no benefit post-PD expected.
- Experimental: $CIT \Rightarrow$ benefit post-PD expected.

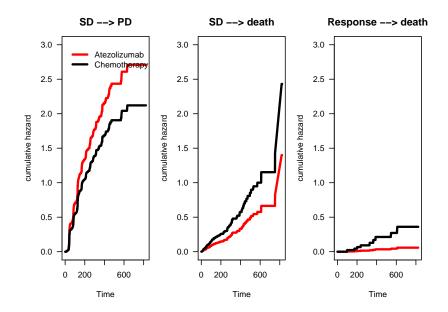
	Atezolizumab	Chemotherapy	HR (95% CI)
Survival	N=425	N=425	
Overall Survival			0.73 (0.62,0.87)
Progression-free Survival			0.95 (0.82,1.10)
Response	N=425	N=425	
Objective Response	58 (13.6%)	57 (13.4%)	
Stable Disease	150 (35%)	177 (42%)	
Progressive Disease	187 (44%)	117 (28%)	
Duration of Response	N=58	N=57	
Median (months, 95% CI)	26.3 (10,NE)	6.2 (4.9-7.6)	

No observed difference in response.

Prolonged duration of response in experimental arm.

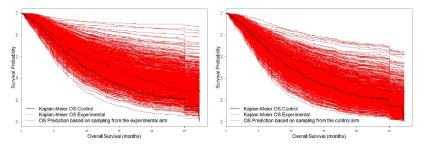
Clear survival benefit.

Oak: cumulative hazards of secondary interest



Oak: operating characteristics

Sampled from experimental and control arm.



Non-proportional hazards via multistate model

Immunotherapy: 1) no difference in PFS, 2) non-proportional hazards for OS.

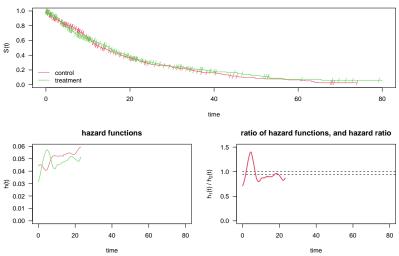
How to quantify effect?

A fictional clinical trial

Simulated clinical trial:

- 1:1 randomized, 400 and 400 patients per arm.
- No administrative censoring, but drop-out.

PFS for simulated clinical trial

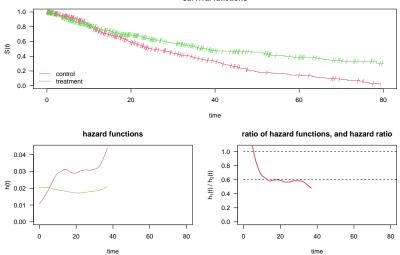


survival functions

• Estimated hazard ratio: 0.94, 95% confidence interval [0.80, 1.11].

• Hypothesis test for PH: p = 0.24.

OS for simulated clinical trial



survival functions

• Estimated hazard ratio: 0.61, 95% confidence interval [0.50, 0.74].

• Hypothesis test for PH: p < 0.0001.

Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition	Control arm	Treatment arm	
0 ightarrow 1	$\lambda_{01}^c = \log(2)/25$	$\lambda_{01}^t = \lambda_{01}^c \cdot 1$	
0 ightarrow 2	$\lambda_{02}^c = \log(2)/30$	$\lambda_{02}^t = \lambda_{02}^c \cdot 0.8$	
1 ightarrow 2	$\lambda_{12}^c = \log(2)/15$	$\lambda_{12}^t = \lambda_{12}^c \cdot 0.4$	

	coef	HR = exp(coef)	95% CI	<i>p</i> -value
transition event-free -> PD	-0.04	0.96	[0.77, 1.19]	0.72
transition event-free $->$ death	-0.09	0.91	[0.70, 1.18]	0.49
transition PD $->$ death	-1.09	0.34	[0.24, 0.46]	< 0.0001

Gaschler-Markefski et al. (2014).

Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 4.0.3 (2020-10-10)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr / mvna / prodlim / biostatKR / survival

This document was generated on 2020-12-09 at 10:41:51.