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Who

Beyer et al. (2019):

Meller et al. (2019):




Oncology endpoints:
@ Progression-free survival (PFS): Time from randomization to earlier of

progression or death.

@ Overall survival (OS): Time from randomization to death.

PFS common surrogate for OS in clinical trials.



Multistate models



Canonical extension of survival analysis
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Multistate models

Multistate model:
@ 1-1 correspondence hazard - probability breaks down.

@ Transition probabilities: (Markov) process X(t);>o with state space {0,1,2} =
{event-free, progression, death}. Then,

Pj(s,t) = P(X: =j|Xs =1,Past).

Estimate Pj;'s nonparametrically by Aalen-Johansen estimator.

@ OS: Aalen-Johansen offers higher precision compared to simple Kaplan-Meier
estimate, Andersen et al. (1993) (p. 315 and Fig. 1V.4.16).

@ Markov assumption stronger than what is needed for Kaplan-Meier though.



Multistate model for PFS and OS

PD
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Standard illness-death model without recovery:
@ Process X(t) € {0,1,2},t > 0 models the state occupied at time t.
@ All patients in state 0 at time 0: P(X(0) =0) = 1.
@ PFS: waiting time in initial state 0, PF'S = inf{t : X(t) # 0}.

@ OS: time until reaching state 2, OS = inf{t : X(t) = 2}.



Prediction in multistate models

Rates (hazards, intensities):
@ Modelling of effects of covariates on transition hazards.

@ Hazard ratios (HR) from Cox regression.

Transition probabilities look at cumulative effects:
@ Effects on transition probabilities may be different from what HRs suggest.
@ Intermediate events in multistate model also contribute to cumulative effects.

@ How to estimate such cumulative effects?

Prediction from multistate model!



Multistate models for
early decision-making



How do we typically decide whether
to move an oncology molecule
into Phase 37



Decision-making in early oncology development

@ Small single-arm trial for experimental drug (e.g. n = 40).
@ Response proportion, duration of response.

© Compare to “corresponding” quantities from literature for control treatment.

But:
@ P(wrong decision) may be high.

@ Primary endpoint in Phase 3: Overall survival.



Proposal:

Decide in early phase based
on OS prediction.

Decrease P(wrong decision).



Challenges and proposal

Challenges:
© Response-type endpoint?
@ Surrogacy? Poor in many indications.
© Immunotherapy (CIT): no effect on response, relevant OS effect.

© Non-randomized comparison = confounding.

Proposal: Base decision-making on OS prediction from multistate model.
@ Predicted survival function for experimental arm.
@ Combine Sexp With Scontrol to get predicted OS HR.

© Experimental drug might act on certain transitions only = not captured through
simple modelling of OS. Potential efficiency gain!

© Propensity scoring.



Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

Atezolizumab

Chemotherapy

Hazard ratio

Effect post-PD

expected

not expected

Objective Response
Duration of Response

Overall Survival

58 (13.6%)
26.3 (10 - o)

57 (13.4%)
6.2 (4.9 - 7.6)

0.73 (0.62, 0.87)




Idealized scenario: Retrospective data
from Phase 3 RCTs.

Long-term follow-up in both arms.

Randomization = no confounding.



Multistate model for early decision-making

Response (R)

Aza(t)

Azq(t)

Stable Disease (SD)

Progression (PD)

Follow-up of patient until PD or death without PD, at least for 6 months.
@ Post-progression hazard \34: borrowing from historical data.
@ Transitions SD — D, R — D rare, hazards =~ same in both arms.

@ Markov assumption.



Predicted survival function in experimental arm, S,

Compute transition probabilities for each transition.

Sexp(t) = 1-— (PSD—>D(0» t) + Psppp—n(0, t) +

Psp—r—n(0,t) + Psp_sr—pp—D(0, f))-

A34 corresponding to PD — D transition borrowed from historical data.



How to compute transition probabilities?

Rigorously, Section A.2.5. in Aalen et al. (2008):
@ Write down transition intensity matrix.

@ Solve Kolmogorov forward equation.

Informal and intuitively:

t
Pra(0,t) = /P11(0,u))\14(u)P44(u,t)du.
0

P11(0, u): probability to remain in State 1 from 0 to u.
@ At u patient transitions to State 4 with intensity A14(u).

@ Remains in State 4 until t.

State 4 (= death) absorbing = Pas(u,t) = 1.

:‘3;[4,4(07 t) = /Ot exp(—/\lg(u) — /\13(u) — /\14(u)) /\14(u)du.



Historical borrowing for A3,

Experimental treatment expected to provide benefit beyond PD?

@ E.g. chemotherapy or antibody-dependent cellular cytotoxicity.
@ Plug-in hazard function estimate from historical control.

@ No post-PD information required for experimental arm.

@ E.g. chemoimmunotherapy.
@ Estimate post-PD hazard ratio assuming proportionality.

@ How much post-PD deaths needed in experimental arm to reliably estimate
post-PD HR?



Benefit beyond PD: Oak



Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

Atezolizumab

Chemotherapy

Hazard ratio

Effect post-PD

expected

not expected

Objective Response
Duration of Response

Overall Survival

58 (13.6%)
26.3 (10 - o)

57 (13.4%)
6.2 (4.9 - 7.6)

0.73 (0.62, 0.87)




If this were early phase data -
would you initiate Phase 37

Competitors used this
mechanism of action.



OS prediction when post-PD hazards assumed proportional

Random variable:

7 { 0 if patient in control,

1 if in experimental group.

A3a(t]Z) = Az4,0(t) exp(B342)

Baseline hazard A340 estimated from both arms combined.

Post-progression hazard ratio 8347



Oak: raw cumulative hazard estimates (of interest)
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Oak: raw cumulative hazard estimates (of interest)

SD ——> Response Response -—> PD PD —-> death
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Oak: estimates / predictions of S
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KM estimate: all data, experimental, post-progression deaths censored
180 days after recruitment or 1 day after PD (whichever later)

—=> uses only early deaths or deaths without prior PD

—->what we have in early phase
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Oak: estimates / predictions of Se,

OS Survival Probability
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—-> what we get with multistate model and post—PD PH assumption
—-> enough post-PD deaths to reliably estimate post-PD HR
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Oak: estimates / predictions of Se,
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—-> enough post-PD deaths to reliably estimate post-PD HR



Early phase decision based on
multistate prediction:

P(wrong decision)?



OS prediction from mimicked early phase data

Historical control: Oak control arm data.

False-positive decision: Sample early phase trial from Oak control arm.

False-negative decision: Sample early phase trial from Oak experimental arm.

Sample early phase trial:
@ 40 patients,
@ 6 months uniform recruitment,
@ analysis 15 months after first patient entered,
@ censor post-PD follow-up one day after PD,

@ estimate A12, A\13, A14, A23, Ao4 from this data.

Cox regression for post-PD transition = As4(t]Z).

Compute prediction of Sexp.



OS HR prediction based on early phase trial

Approximate HR by fitting exponential distribution to both arms = AR.
Decision to move to Phase 3: HR < boundary € {0.80,0.85,0.90,1.00}.
Repeat 1000 times.

Resampling = quantification of uncertainty.



Oak: P(wrong decision)

P(go into Phase 3) = P(approximated HR <= boundary)

104 — false—positive: go into Phase 3 although drug useless
—— false—negative: kill drug that works

0.8

0.6

P(go into Phase 3)

0.0 +

0.80 0.85 0.90 0.95 1.00

hazard ratio decision boundary



How many post-PD deaths to
estimate HR of PD — death transition?

Ask during Q&A.



Conclusions for early-decision making proposal



Conclusions

Early phase decision-making based on multistate OS prediction:
@ Assumption on A3s = need to understand disease and treatment.
@ Avoids difficulty in interpretation of response-type endpoints.
@ Feasibility assessed in idealized scenario.
@ Recommendation how much post-PD follow-up needed to estimate (334.

@ Needs long-term individual-patient data in control arm!



What about confounding?
Real-world data as historical control.

Combine proposal with propensity scoring.



Conclusions



Multistate models

Multistate models useful:
@ Canonical extension of survival analysis.
@ Get more insight in how disease and drug work.
@ Prediction in well-specified, as opposed to black-box, model.
@ Jointly model three key oncology endpoints: response, PFS, OS.

@ Applications by no means restricted to oncology!

Many potential applications:
@ Improved early stage decision-making = Beyer et al. (2019).
@ Improved communication of effect and optimized sample size computation.

@ Bivariate modelling of PFS and OS to help inform surrogacy questions =
Meller et al. (2019).



Thank you for your attention.

kaspar.rufibach@roche.com
http://www.kasparrufibach.ch
¥ numbersman77
© numbersman77



References |

> Aalen, O., Borgan, @., and Gjessing, H. (2008). Survival and event history analysis: a process
point of view. Springer Science & Business Media.

> Aalen, O. O. (1987). Dynamic modelling and causality. Scandinavian Actuarial Journal,
1987(3-4), 177-190.

> Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for non-homogeneous
markov chains based on censored observations. Scandinavian Journal of Statistics, 5(3),
141-150.

> Andersen, P. K., Borgan, @., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on

Counting Processes. Springer.

> Baselga, J. and Cortes, J. et. al. (2012). Pertuzumab plus trastuzumab plus docetaxel for
metastatic breast cancer. N. Engl. J. Med., 366(2), 109-119.

> Beyer, U., Dejardin, D., Meller, M., Rufibach, K., and Burger, H. U. (2019). A multistate
model for early decision making in oncology. Biom J, to appear.

» Beyersmann, J., Allignol, A., and Schumacher, M. (2012). Competing Risks and Multistate
Models with R. Springer.

» Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., and Renard, D. (2001). Validation of
surrogate end points in multiple randomized clinical trials with failure time end points. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 50(4), 405-422.



References Il

» Buyse, M., Molenberghs, G., Paoletti, X., Oba, K., Alonso, A., Van der Elst, W., and
Burzykowski, T. (2016). Statistical evaluation of surrogate endpoints with examples from
cancer clinical trials. Biom J, 58(1), 104-132.

» Emura, T., Nakatochi, M., Murotani, K., and Rondeau, V. (2017). A joint frailty-copula model
between tumour progression and death for meta-analysis. Stat Methods Med Res, 26(6),
2649-2666.

> Fleischer, F., Gaschler-Markefski, B., and Bluhmki, E. (2009). A statistical model for the
dependence between progression-free survival and overall survival. Stat. Med., 28(21),
2669-2686.

> Fu, H., Wang, Y., Liu, J., Kulkarni, P. M., and Melemed, A. S. (2013). Joint modeling of

progression-free survival and overall survival by a Bayesian normal induced copula estimation
model. Stat Med, 32(2), 240-254.

» Gaschler-Markefski, B., Schiefele, K., Hocke, J., and Fleischer, F. (2014). Multi-state Models
Used in Oncology Trials, pages 283-304. Springer Berlin Heidelberg, Berlin, Heidelberg.

> Li, Y. and Zhang, Q. (2015). A Weibull multi-state model for the dependence of
progression-free survival and overall survival. Stat Med, 34(17), 2497-2513.

> Meller, M., Beyersmann, J., and Rufibach, K. (2019). Joint modeling of progression-free and
overall survival and computation of correlation measures. Statistics in medicine, 38, 4270-4289.



References Il1

» Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., Von Pawel, J., Gadgeel,
S. M., Hida, T., Kowalski, D. M., Dols, M. C., et al. (2017). Atezolizumab versus docetaxel in
patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label,
multicentre randomised controlled trial. The Lancet, 389(10066), 255-265.

> Swain, S. M. and Baselga, J. (2015). Pertuzumab, trastuzumab, and docetaxel in
HER2-positive metastatic breast cancer. N. Engl. J. Med., 372(8), 724-734.

» Weber, E. M. and Titman, A. C. (2019). Quantifying the association between progression-free
survival and overall survival in oncology trials using kendall's 7. Statistics in medicine, 38,
703-719.



Backup



PFS - OS



Multistate vs. latent failure time model

Fleischer et al. (2009), Li and Zhang (2015): LFTM with uncheckable and
questionable (unrealistic?) independence assumption.

Parametric models: formula for Spgs identical for all three models below, and

@ Time-homogeneous Markov, Exponential: model so simple that 3
time-inhomogeneous Markov process. Spg identical to Exponential LFTM.

@ Time-homogeneous Markov, Weibull: formula for Sps identical to Weibull
LFTM = are model assumptions equivalent? No!

@ Time-inhomogeneous Markov, Weibull: formulas for Sps are different.

BUT: values of estimated parameters differ between LFTM and multistate for all
three parametric models, as likelihoods differ!

Not clear (?) how to nonparametrically estimate LFTM = possible for (Markov)
multistate.



Assumptions for multistate model



Assumptions for multistate model

Multistate model sufficiently smooth so that following intensities exist:

P(PFS € [t, t + At), X(PFS) = j| PFS > t)

aoj(t) = AIEQO At ,j = 1,2
P(X(t + At) = 2| X(t—) = 1,PFS =
ap(t;tt) = lim (X(t +At) | X(t-) ,PFS =t;)
AtN\0 At
P(OS—PFSe[t—t,t—t At)|OS > t,PFS =t
= im & Elt—t,t-t+AN)[OS>1t, 1) for t; < t.
A0 At

t1: observed PFS time, i.e. time when leaving state 0.



Assumptions for multistate model

X(t) Markov:

@ Time-inhomogeneous: intensity of death after progression does not depend on

time of progression, aq2(t; t1) = au2(t) for all t < t.

@ Homogeneous: intensities are time-constant, i.e. Exponential,
Ot,'j(t) = ajj, i,j=0,1,2.

X(t) non-Markov (= semi-Markov for illness-death model without recovery):

@ Intensities depend on state patient is in at s and entire history < s, i.e. all

transitions.

@ Relevant for 1 — 2 transition only, as 0 — 1,2 are rooted in initial state 0.

As soon as a quantity depends on 1 — 2 transition we need to be specific about
assumption on X(t).



lliness-death multistate model for PFS and OS

Transition probabilities to move from state / at time s to state m at time t:

Pim(s,t) = P(X(t) = m|X(s) = I, history).

Illness-death model w/o recovery, P, as functions of transition intensities,
Aalen et al. (2008):

Poo(s,t) = exp (— /Staol(u) + ao2(u) du) ,
Pu(s, t;t1) = exp (* /:0412(”; t1) dU) )

P22(S, t) = 1,
t
Poi(s,t) = / Poo(s, u—)ao1(u)Pi1(u, t; u) du,
s
Plz(s,t;tl) = 1— P11(s, t; tl),
Poa(s, t) 1- (Poo(& t) + Poi(s, t)>~

If X(t) non-Markov:
@ P31 and Pjz depend on PFS time t;.

@ Although Py1, Py2 depend on a2 they do not depend on t;.



Intuition behind transition probabilities

Poo(s, t), Pii(s, t; t1): exp of cumulative hazards = standard survival functions.

Poi(s,t) = [IPoo(s, u—)ao1(u)Pi1(u, t; u) du: integral of
@ Poo(s, u—)api(u): “infinitesimal probabilities” to move from 0 to 1 at time u,
u € (s,t],

@ Pi1(u, t; u): subsequently stay in state 1 until at least time t, with progression

happened in u.



lliness-death multistate model for PFS and OS

Marginal distributions:
Sprs(t) =  P(PFS >t) = Poo(0,t),
Sos(t) = P(OS>1t) = Poo(0,t) + P (0, t),

Joint distribution:

P(PFS < 1,08 < v) P(X(u) € {1,2}, X(v) = 2)

= P(X(u)=1,X(v) =2) + P(X(u) = 2)

= P(X(v) =2|X(u) = 1) - P(X(u) = 1]X(0) = 0)
+ P(X(u) = 2|X(0) = 0)

= P(X(V):2|X(U) = ].)-:’:’01(07 u)+P02(0,u).

X inhomogeneous Markov: P(X(v) = 2|X(u) = 1) = P12(u, v) independent of
progression time t; < u.

X non-Markov: integrate P12(u, v; t1) over conditional distribution of all possible

progression times t; < u = final formula tedious.



Results: Sps for Exponential

Probability of no event
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Results: Sps for Weibull

Data from time—-inhomogeneous Markov,
Weibull with different shape, n = 500
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Results: correlations Exponential

Exponential

0.8 1

0.6 1

Corr(PFS, OS)

0.4 1

0.2 1

Nonparametric with weibull tail  Li and Zhang (2009)

Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.



Results: correlations Weibull

Weibull with unequal shape
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Nonparametric with weibull tail  Li and Zhang (2009)

Corr(PFS, OS) for 200 simulated dataset from time-inhomogeneous Markov process.



Results: CLEOPATRA, Baselga and Cortes (2012).
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Time
Weibull Nonparametric
Exponential Weibull Markov Markov
Corr(PFS, OS) 0.611 0.643 0.483 0.450

95% Bootstrap CI  [0.541; 0.673]  [0.584; 0.699]  [0.342; 0.643]  [0.297; 0.655]

Table: Correlation between PFS and OS in CLEOPATRA (1000 bootstrap samples).



Early decision-making



How many post-PD deaths needed?

Assumption:

A3a(t]Z) = Asao(t)exp(B3aZ).

How many post-PD deaths needed in experimental arm to reliably estimate A347?

Planning stage: only data for control arm are available.
@ Fit multistate model to control data.

@ Assume transition-specific hazard ratios corresponding to clinically meaningful

0OS effect.

@ Simulate.

Various scenarios for post-PD follow-up time.



Simulation details — mimick Oak

NOT power computation for hypothesis test — sample size too small anyway.

Rather: find cutoff timepoint from which on OS HR estimate remains stable.

@ Simulate 40 patient from experimental arm as before.

Response

Stable Disease

Progression

@ Resulting OS HR = 0.73. Close to Oak OS HR.

@ Follow-up post-PD for experimental arm truncated at 30, 60, 90, 120, 150, 180
and 240 days after recruitment.

@ Repeat 1000 times.



Stability of hazard ratio estimate

A Treatment Effect B No Treatment Effect
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Follow—-up since recruitment (days) Follow-up since recruitment (days)

180-240 days sufficient to obtain stable point estimate over time.

Typical early phase follow-up: Post-PD deaths censored 180 days after recruitment in
experimental arm.



Example 1: Cleopatra



Cleopatra

Baselga and Cortes (2012), Swain and Baselga (2015).

Previously untreated HER2-positive metastatic breast cancer patients.

Pertuzumab+Trastuzumab  Trastuzumab

HR (95% CI)

Survival N=402 N=406
Overall Survival

Progression-free Survival

Response N=343 N=336
Objective Response 275 (80.2%) 233 (69.3%)
Stable Disease 50 (14.6%) 70 (20.8%)
Progressive Disease 13 (3.8%) 28 (8.3%)
Duration of Response N=275 N=233
Median (months, 95% ClI) 20.2 (16.0,24.0) 12.5 (10.0-15.0)

0.64
(0.47,0.88)
0.62 (0.51,0.75)

Moderate difference in response.
Prolonged duration of response in experimental arm.
Clear OS benefit.

Experimental treatment induces antibody-dependent cellular

benefit beyond PD expected = A3; same in both arms.

cytotoxicity = no



Cleopatra: raw cumulative hazard estimates (of interest)

cumulative hazard
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Cleopatra: estimates / predictions of S,
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Cleopatra: estimates / predictions of S,

OS Survival Probability
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Cleopatra: estimates / predictions of S,

OS Survival Probability
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Cleopatra: estimates / predictions of S,

OS Survival Probability
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KM estimate: all data, experimental, post-progression deaths censored
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Cleopatra: estimates / predictions of S,

OS Survival Probability
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= - KM estimate: all data, control

—— KM estimate: all data, experimental

KM estimate: all data, experimental, post-progression deaths censored
——> uses only deaths without prior PD ——> what we have in early phase

MS prediction: all data, experimental, post—progression deaths censored
—=> multistate model with post-PD hazard borrowed from control arm
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Conclusions for Cleopatra

For estimated / predicted survival function in experimental arm, based on all data:
@ Majority of patients dies after observed PD.

@ KM estimate of simply censoring post-PD deaths does not work = very few

deaths observed.

@ Multistate model prediction assuming post-PD hazards as in control provides

good prediction.



Early phase decision based on
multistate prediction:

Operating characteristics?



OS prediction from mimicked early phase data

Sample early phase trial from Cleopatra experimental arm:
@ 40 patients,
@ 6 months uniform recruitment,
@ analysis 15 months after first patient entered,
@ censor post-PD follow-up one day after PD,
@ estimate A12, A\13, A14, A23, A2a from this data,
@ borrow X34 from historical data = Cleopatra control arm in idealized scenario,

@ compute prediction of Sexp as described above.



Resampling of operating characteristics

Setup:
@ Use all data in control arm = corresponds to historical control.
@ False-positive decision: Sample early phase trial from Cleopatra control arm.
@ False-negative decision: Sample early phase trial from Cleopatra experimental
arm.
@ Approximate HR by fitting exponential distribution to both arms = AR.
@ Decision to move to Phase 3: HR < boundary € {0.80,0.85,0.90,1.00}.
@ Repeat 1000 times.

Resampling easily allows for quantification of uncertainty.



Cleopatra: operating characteristics

Sampled from experimental and control arm.
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Cleopatra: operating characteristics

probability to go into Phase 3: P(approximated HR <= boundary)

109 — false—positive: go into Phase 3 although drug useless
—— false—negative: kill drug that works

0.8

0.6

probability

0.2
o
o
o

0.0

I T T T I
0.80 0.85 0.90 0.95 1.00

hazard ratio decision boundary
Decision based on response: ~ 10% difference, some prolongation of DOR = moved
to Phase 3.



Cleopatra: cumulative hazards of secondary interest

SD -->PD SD --> death Response ——> death
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Oak

Previously treated non-small-cell lung cancer. Rittmeyer et al. (2017).

@ Control: no benefit post-PD expected.

@ Experimental: CIT = benefit post-PD expected.

Atezolizumab Chemotherapy HR (95% ClI)
Survival N=425 N=425
Overall Survival 0.73 (0.62,0.87)
Progression-free Survival 0.95 (0.82,1.10)
Response N=425 N=425

Objective Response
Stable Disease
Progressive Disease
Duration of Response
Median (months, 95% Cl)

58 (13.6%)
150 (35%)
187 (44%)
N=58

26.3 (10,NE)

57 (13.4%)
177 (42%)
117 (28%)
N=57

6.2 (4.9-7.6)

No observed difference in response.

Prolonged duration of response in experimental arm.

Clear survival benefit.



Oak: cumulative hazards of secondary interest

SD -->PD SD --> death Response ——> death
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Oak: operating characteristics

Sampled from

y

Survival Probabilit

experimental and control arm.
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Non-proportional hazards via multistate model



Immunotherapy:
1) no difference in PFS,
2) non-proportional hazards for OS.

How to quantify effect?



A fictional clinical trial

Simulated clinical trial:
@ 1:1 randomized, 400 and 400 patients per arm.

@ No administrative censoring, but drop-out.



PFS for
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@ Estimated hazard ratio: 0.94, 95% confidence

@ Hypothesis test for PH: p = 0.24.

time

interval [0.80, 1.11].



OS for simulated clinical trial

survival functions
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@ Estimated hazard ratio: 0.61, 95% confidence

@ Hypothesis test for PH: p < 0.0001.

interval [0.50, 0.74].



Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition Control arm

Treatment arm

0—~1 A5, = log(2)/25

>‘61 =M1

0—2 A5, = log(2)/30

Ay = A5, - 0.8

12 Af, = log(2)/15

)‘iz =A-04

coef  HR = exp(coef) 95% ClI p-value
transition event-free —> PD -0.04 0.96 [0.77, 1.19] 0.72
transition event-free —> death  -0.09 0.91 [0.70, 1.18] 0.49
transition PD —> death -1.09 0.34 [0.24, 0.46] < 0.0001

Gaschler-Markefski et al. (2014).



Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 4.0.3 (2020-10-10)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr /
mvna / prodlim / biostatKR / survival

This document was generated on 2020-12-09 at 10:41:51.
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