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The intellectual illness of clinical drug evaluation
that I have discussed here can be cured,

and it will be cured when we restore
intellectual primacy to the questions we ask,
not the methods by which we answer them.

Lew Sheiner
American Clinical Pharmacologist

Sheiner (1991)
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After emailing scientific question
back three times:

So hard exercise, it made me realise I am
not sure what exactly we want.

Roche quantitative scientist
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Agenda

1 Case study: hematology

2 Case study: treatment switching

3 Impact and conclusions

4 Backup: ICH E9(R1) addendum: Why? And what’s new?

5 Backup: Industry working group Estimands in oncology

6 Backup: Subgroups by post-randomization event - principal stratification

7 Backup: Estimation of average causal effect

8 Backup: Estimation of principal effects
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Case study: hematology
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Complex treatment strategies in hematology

Ratify trial, Stone et al. (2017).

Randomized, phase III double-blind clinical trial.

Population: newly diagnosed AML with a FLT 3 mutation.

Comparison: after completion of primary therapy: Midostaurin vs. placebo.

Primary endpoint: OS.

Key secondary endpoint: EFS.
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OS was significantly longer in the midostaurin group than in the placebo

group, as was EFS. [...] In both the primary analysis and an analysis in which

data for patients who underwent transplantation were censored, the benefit

of midostaurin was consistent across all FLT3 subtypes.
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What question are we asking?

Protocol objective: To determine if the addition of midostaurin to induction,

consolidation, and maintenance therapy improves OS in mutant AML patients.

Primary analysis: survival regardless of receiving SCT or maintenance

⇒ treatment effect = if SCT is part of treatment strategy.

Sensitivity analysis: censoring at transplant ⇒ treatment effect = hypothetical

estimand strategy, if no SCT was given. Estimand is implicit!

Completely different clinical questions!
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SmPC: In combination with induction and consolidation, and for patients in

complete response followed by single agent maintenance therapy.

USPI: In combination with standard induction and consolidation.
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AML:

treatment strategy based on sequence of

multiple decision points and

treatment modalities.

RATIFY:

Despite detailed description of objectives and treatment in protocol

⇒ insufficient alignment on underlying question of interest.

SCT:

Component of treatment strategy with potential major impact on B/R.

Impact not clearly outlined in trial objective.

Maintenance: Despite explicit inclusion in trial objective ⇒ inconsistently

included in approved labels EMA and FDA.
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How would we define the estimand today?

Clinical trial objective: To determine if the addition of midostaurin to induction,

consolidation, and maintenance therapy with the option to receive SCT in CR

improves OS in mutant AML patients.

Treatment strategy:

Experimental: Daunorubicin-AraC induction + midostaurin, AraC + midostaurin

consolidation in pts with a CR, midostaurin maintenance, option to receive SCT

in CR.

Control: Daunorubicin-AraC induction + placebo, AraC + placebo consolidation

in pts with a CR, option to receive SCT in CR.

Population: newly diagnosed AML with a FLT 3 mutation eligible for intensive

chemotherapy.

Variable: OS.

Intercurrent events: none left for OS - all integrated in treatment strategy attribute.

Summary measure: hazard ratio.
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Complex (multiphase) strategies:

Non-proportional hazards?

Cure?
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What do these findings have in common?

They can all be anticipated!

Clear formulation of
clinical trial objective is key.
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Sun et al. (2021):

Three case studies.

Categorization and discussion of sensitivity and supplementary analyses.

Templates for protocol and SAP.
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Agenda

1 Case study: hematology

2 Case study: treatment switching

3 Impact and conclusions

4 Backup: ICH E9(R1) addendum: Why? And what’s new?

5 Backup: Industry working group Estimands in oncology

6 Backup: Subgroups by post-randomization event - principal stratification

7 Backup: Estimation of average causal effect

8 Backup: Estimation of principal effects
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Case study: treatment switching
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Good old days: Herceptin
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HERA

Population: HER2+ early breast cancer patients.

Primary therapy: surgery, chemotherapy, or radiotherapy as indicated.

Comparison: after completion of primary therapy: trastuzumab vs. observation.

Randomized, phase III clinical trial.

Primary endpoint: investigator-assessed disease-free survival.

Piccart-Gebhart and Procter (2005):

Trial stopped early at planned interim analysis (347 events).

All control patients without prior disease recurrence allowed to cross-over to

trastuzumab ⇒ 52% did so.
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Primary endpoint DFS in HERA over time
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Overall survival in HERA over time
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HERA: comments

OS effect establised in long-term follow-up despite cross-over:

Herceptin new drug class ⇒ large treatment effect.

No alternative therapy for control arm patients ⇒ crossover represents standard

of care.

Globally!

Treatment policy estimand interpretable.
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Oncology landscape has changed!
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Clinical trials with anti-PD1/PDL1 agents

1 in 2006, 1502 in Sep 2017, 2250 in Sep 2018, 2975 in Sep 2019.

Tang et al. (2018)

https://www.cancerresearch.org/scientists/immuno-oncology-landscape/

pd-1-pd-l1-landscape.
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CAR-T trials

13 in 2013, >100 in 2017.

Yu et al. (2018).
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Great for patients!

durable responses,

many ongoing clinical trials.

But what does it mean for clinical trials?
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Typical OS definition:

Time from randomization to death regardless of patient’s journey.

Treatment policy for every intercurrent event (crossover, new therapy, etc.).

Balance in subsequent therapies generally not expected:

Physician choose subsequent therapy in light of previously administered therapies.

If experimental drug works⇒ less switchers.

Treatment policy OS estimand interpretable if subsequent therapy after EOT reflects

clinical practice.
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Subsequent therapy after EOT reflects clinical practice.

Treatment policy OS estimand interpretable.
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Subsequent therapy after EOT does not reflect clinical practice:

Immuno-oncology.

Treatment policy estimand relevant?

Benefit on OS without cross-over more informative? Hypothetical estimand!
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RECORD-1

RECORD-1: Motzer et al. (2010). PFS (left) and OS (right).

Further examples: GRID, Demetri et al. (2016); GLARIUS, Herrlinger et al. (2016), Javelin

Lung 200, Barlesi et al. (2019).
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Randomized but not treated

Blinding often infeasible.

Checkmate-37:

20% vs 1.5%.

Weber et al. (2015).

Quantum-R:

23% vs 1.6%.

Cortes et al. (2019).

That is quite bothersome, I’ve been here 20 years. I haven’t seen this dis-

crepancy of randomized but not treated to this extent.

(Rick Pazdur on Quantum-R)

Overall survival in all randomized patients interpretable?
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If subsequent therapies do not reflect clinical practice...

...OS description in labels is ambiguous:

Regorafenib USPI:

Nivolumab SmPC:
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If subsequent therapies do not reflect clinical practice...

...drugs are perceived as not improving survival.

Driven by

non-significant result

for treatment-policy OS estimand

when subsequent therapies do not reflect clinical practice!
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If subsequent therapies do not reflect clinical practice...

...regulatory standards are perceived to be low.
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If subsequent therapies do not reflect clinical practice...

...hypothetical estimand represents key question of interest.

Relevant for patients and prescribers in label: effect of STIVARGA on OS if

placebo-treated patients did not have possibility to cross-over to STIVARGA after

PD?

⇒ hypothetical strategy for intercurrent event of cross-over.
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Treatment switching in immuno-oncology

Treatment switching in immuno-oncology:

Availability of non-approved drugs (in other clinical trials) after SOC.

Open-label trials: Patients switch directly after randomization.

Additional challenge: Varying access to such treatment across countries.

Treatment policy effect for OS really what we are interested in?
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How DO we estimate OS effect?

Hypothetical estimand?
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Estimands for treatment switching

Manitz et al. (2021)
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Manitz et al. (2021)
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Conclusions treatment switching

All stakeholders - industry, regulators, payors - have an interest in interpretable OS

estimates.

Treatment policy estimand for OS: remains main question of interest for regulators,

patients and physicians in vast majority of situations.

Hypothetical estimand: may be more meaningful for intercurrent events in certain

situations. May help payers quantify added value of new drug.

Methodology may not yet be perfect: all stakeholders need to

learn together,

understand primary and sensitivity analyses.

Enables to communicate added value of drugs better.
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Agenda

1 Case study: hematology

2 Case study: treatment switching

3 Impact and conclusions

4 Backup: ICH E9(R1) addendum: Why? And what’s new?

5 Backup: Industry working group Estimands in oncology

6 Backup: Subgroups by post-randomization event - principal stratification

7 Backup: Estimation of average causal effect

8 Backup: Estimation of principal effects
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Impact and conclusions
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Impact on data collection and trial planning

Estimand dictates data that need to be collected.

Each trial likely to have multiple estimands ⇒ different estimands might require

different data!

Requires multi-disciplinary involvement from earliest stages of clinical trial

development.

Impacts design of eCRF or other data collection tools and monitoring strategy.

Likely increased effort in recording reasons underlying treatment or study

withdrawals, or missing data.

Might need to reflect estimand assumptions in sample size computation!

Novo Nordisk:

Focussing on retention, keeping subjects in trial even after discontinuing trial

drug.

Increased completion rates from 90% to 98% in type 1 diabetes and from 70%

to over 90% in obesity trials.

Source: https://www.dsbs.dk/moder/Estimands/HLynggaard.pdf.
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Broader impact

Aligning stakeholder’s expectations for target treatment effect upfront has potential to

give:

Increased transparency and clarity with respect to assumptions, data analysis,

and inference.

Clarity about added value of drugs: meaningful descriptions of treatment effects

for licensing and prescribing decisions.

Clinical trials with designs that are aligned to agreed objectives.

Clear language to describe and discuss different estimands required by different

stakeholders.

More predictable regulatory assessment procedures.

Reduction in total number of analyses (primary + secondary + sensitivity).

Shift of resources from analysis / filing to design.

Alternative approaches to avoid non-informative treatment policy estimand if its

assumption very likely to be violated.
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Design trumps analysis.

Don Rubin, American Statistician
Rubin (2008)
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Thank you for your attention.

kaspar.rufibach@roche.com

http://go.roche.com/dss-mco

http://www.kasparrufibach.ch

7 numbersman77

� numbersman77
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Marcucci, G., Lo-Coco, F., Klisovic, R. B., Wei, A., Sierra, J., Sanz, M. A., Brandwein, J. M., de Witte, T., Niederwieser, D.,

Appelbaum, F. R., Medeiros, B. C., Tallman, M. S., Krauter, J., Schlenk, R. F., Ganser, A., Serve, H., Ehninger, G., Amadori, S.,
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ICH E9 draft addendum

ICH E9: “Statistical principles for Clinical Trials.”

1998.

Why amend E9?

Lack of alignment between trial objectives and reported effect quantification.
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Example: Dapagliflozin

ICH E9 working group toy example, Hemmings (2015).

Dapagliflozin:

Anti-diabetic therapy to treat hyperglycemia.

Discussed in 2011 in a public advisory committee at FDA.

Trial objective: Assess whether drug works compared to placebo.
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Example: Dapagliflozin

Sponsor FDA

Proposed analysis Remove data after rescue. Use all data, irrespective of

rescue.

Implied scientific question Treatment effect of the

initially randomized treat-

ments had no patient re-

ceived rescue medication.

Compare treatment policies

“dapagliflozin + rescue” vs.

“control + rescue”.

What is going on?

Implied objectives / scientific questions of interest differ for sponsor and

regulator.

Discussion only at time of filing, while this is actually a design question!

Estimand hidden behind the method of estimation / handling of missing data

⇒ statistics section defines trial objective!

“How should we handle missing data?” becomes

“What question are we really interested to answer?”
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What is a “treatment effect”?
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Treatment effect

Not defined in original E9!

How outcome compares to what would have happened to same subject under

alternative treatment, e.g. had they

not received treatment,

received a different treatment.

Potential outcome ⇒ causal inference!

Estimate average treatment effect from randomized clinical trial.
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Understanding treatment effects

Multiple definitions of treatment effect.

Different definitions addressing different scientific questions.

Not all equally acceptable for regulatory decision making.

Not all alternatives can be reliably estimated! Iterative process of estimand -

estimator definition.

Stakeholders: regulators, HTA / payers, phyisicians, patients ⇒ all need to make

decisions.
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How does the addendum fix this?

More precise definition of trial objective
⇒ estimand!
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Objective pre- and post-addendum

Pre:
Treatment difference between Gazyva and Rituximab on PFS.

Post:
The trial will compare 6 or 8 21-day cycles obinutuzumab D1 + C1D8, C1D15:

1000mg/m2 flat + site-specific choice of CT (CVP, Benda, CHOP) in induc-

tion followed in responding patients by 1000mg flat every 2 months until PD

or up to 2y with 6 or 8 21-day cycles rituximab 375mg/m2 D1 + site-specific

choice of CT (CVP, Benda, CHOP) in induction followed in responding pa-

tients by 375mg/m2 every 2 months until PD or up to 2y in first-line follicular

lymphoma patients.

The primary comparison of interest is the hazard ratio of progression-free

survival. The primary trial objective is to demonstrate superiority of the

experimental over the control treatment.

The primary comparison of progression-free survival will be made regardless

of whether patients withdraw from treatment or receive new-anti lymphoma

therapy prior to disease progression.

Estimand follows from precise trial objective (or vice-versa).
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Industry working group on estimands in oncology:

Founded February 2018.

Represents industry in Europe and US:

European special interest group “Estimands in oncology”, sponsored by PSI and EFSPI.

ASA scientific working group of ASA biopharmaceutical section.

77 members (30 EU + 38 US + 9 Asia) representing 37 companies / institutions.

Regularly interacts with 8 health authorities.

Presentations, webinars, papers.

www.oncoestimand.org
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Papers

Published:

Lawrance et al. (2020): What is an estimand & how does it relate to quantifying

the effect of treatment on patient-reported quality of life outcomes in clinical

trials. link

Degtyarev et al. (2020): Assessing the impact of COVID-19 on the objective and

analysis of oncology clinical trials - application of the estimand framework. link

Casey et al. (2021): Estimand framework: Are we asking the right question? A

case study in the solid tumor setting. link

Sun et al. (2021): Estimands in Hematology Trials. link

Manitz et al. (2021): Estimands in clinical trials with treatment switching. link

Bornkamp et al. (2021): Principal Stratum Strategy: Potential Role in Drug

Development. link (incl. markdown file with code).

Hampson et al. (2021): Comment on FDA paper on Biostatistical Considerations

When Using RWD and RWE in Clinical Studies for Regulatory Purposes. link

More papers under preparation.
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Task forces

Estimands engagement.

Principal stratification in clinical trials.

Patient-reported outcomes.

Duration of responses.

Quantification of follow-up.

Real-world data and estimands.

Conditional vs. marginal effects.

Time to event endpoints with prognostic or predictive biomarker subgroups.
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“... The target population might be taken to be the ”principal stratum” in which an

intercurrent event would occur. Alternatively, the target population might be taken to

be the principal stratum in which an intercurrent event would not occur. The clinical

question of interest relates to the treatment effect only within the principal stratum...”

ICH (2019)
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Principal stratification:

Originates in causal inference: Frangakis and Rubin (2002).

Framework for comparing treatments adjusting for posttreatment variables.

Formulated within potential outcomes framework.

Yields principal effects which are causal effects within a principal stratum.

Introductory books causal inference: Imbens and Rubin (2015), Hernán and Robins (2020).
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First, let us summarize what does not work.

Rufibach & Yung Answering Old Questions with New Tools

Backup: Subgroups by post-randomization event - principal stratification #80 /

121



2-arm RCT test (T) vs. control (C)

Do responders
have higher treatment effect?

“Subgroup” built by post-randomization event!
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How can we make valid causal statements?

Need “matched control patients”!
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Test

Control
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Test
responder non−responder
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Test
responder non−responder

Patients who respond
if randomized to Test

had they received control
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For every complex problem, there is a solution
that is simple, neat, and wrong.

H.L. Mencken, American Journalist
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Naive analyses are misleading and
do not answer causal question

Principal stratification:
“subgroup analysis for post-baseline subgroups”

randomization + assumptions
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Are such questions relevant?
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Bornkamp et al. (2021).

CAR-T example - see later!

OS / PFS by response.
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Potential outcomes and principal stratification

Z :=

1 test treatment

0 control treatment.

Y : outcome (binary, continuous, time-to-event).

Ideal world: treating physician decides on treatment based on outcome if given

control treatment: Y (Z = 0) = Y (0),

test treatment, Y (Z = 1) = Y (1).

Neither Y (0) nor Y (1) known when assigning treatment!

Only one observed at all ⇒ individual causal effect Y (1)− Y (0) not observed.
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What are causal effects?

Y (1)i : potential outcome for patient i .

S: population of patients.

Causal treatment effect:

Comparison of {Y (1)i , i ∈ S} vs. {Y (0)i , i ∈ S}.

Compare outcomes “had everyone received treatment” vs. outcomes “had

everyone received control”. Hypothetical scenario.

Association Causation

E(Y|Z=1) E(Y|Z=0)vs E(Y(1)) vs E(Y(0))

Z=1

Z=0

Overall population
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Naive analysis

Not a causal effect: comparison of {Y (1)i , i ∈ S1} vs. {Y (0)i , i ∈ S2} with S1 6= S2.

Naive analysis: Let S = indicator variable for intercurrent event, e.g. responder.

Compare patients with S = 1 on both test and control arm.

RCT: S(Z) post-randomization ⇒ S depends on Z !

We observe S(Z = 1) on test and S(Z = 0) on control ⇒ population of patients

with S(1) = 1 and S(0) = 1 might be quite different!

Breaks randomization ⇒ not comparing “like with like”⇒ not estimating causal

effect.

Numerically observe a treatment effect in naive analysis ⇒ not clear whether

due to different treatments or

due to difference in compared populations.

Estimates treatment effect in principal stratum {S(1) = 1} ∩ {S(0) = 1}
assuming S(1) = S(0) ⇒ response not treatment related. Assumption quite

strong and rarely justified!
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Principal stratification

Idea: stratify patients based on potential outcomes S(0), S(1) for all treatments.

S(0) = 1 S(0) = 0

S(1) = 1 {S(1) = 1} ∩ {S(0) = 1} {S(1) = 1} ∩ {S(0) = 0}
S(1) = 0 {S(1) = 0} ∩ {S(0) = 1} {S(1) = 0} ∩ {S(0) = 0}

Causal interpretation:

Stratify population according to the same rule on treatment and control arm.

Possible since membership to principal stratum fixed at baseline, not affected by

treatment assignment.

Caveat:

For patients on test arm we observe S(1), but not S(0), and vice versa for

patients on control arm.

Identification of patients in strata of interest generally not possible, not even

after observing Y and S in a given trial.
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Example: antidrug antibodies in immunotherapies

Biological drugs: may trigger immune responses ⇒ formation of antidrug

antibodies (ADAs).

Scientific question: Do patients that develop ADAs still benefit from the drug?

Y : PFS or OS.

S: occurrence of ADA at x weeks, say x = 4.

Depending on test and control treatment ⇒ ADA only in test arm.

S(0) = 1 S(0) = 0

S(1) = 1 {S(1) = 1} ∩ {S(0) = 1} {S(1) = 1} ∩ {S(0) = 0}
S(1) = 0 {S(1) = 0} ∩ {S(0) = 1} {S(1) = 0} ∩ {S(0) = 0}

ADA+ under control ADA- under control

ADA+ under test Stratum of interest

ADA- under test
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Effect measures

Primary interest:

Compare Y (1) vs. Y (0) in stratum {S(1) = 1}.

Contrast this to results in {S(1) = 0}.

Effect measure:

(Hazard ratio not causally interpretable: Aalen et al. (2015).)

Base effect measure on survival functions:

U1(t) := P(Y (1) > t|S(1) = 1) and U0(t) := P(Y (0) > t|S(1) = 1).

Examples:

Milestone difference at t∗ > t̃:

δ(t∗) = U1(t∗)− U0(t∗).

Time-averaged version, i.e. difference in RMST:∫ t∗

0
δ(t)dt = E [min(Y (1), t∗)−min(Y (0), t∗)].
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Potential outcomes, estimands, and PS

All estimand strategies can be formulated using potential outcomes: Lipkovich et al.

(2020).

Additional complications: Y time-to-event ⇒ outcome event = competing risk for

intercurrent event. Naive analyses conditioning on observed intercurrent event:

Compares non-randomized populations.

Immortal bias: patients immortal until observation of S.

Rufibach & Yung Answering Old Questions with New Tools

Backup: Subgroups by post-randomization event - principal stratification #99 /

121



Potential outcomes, estimands, and PS

All estimand strategies can be formulated using potential outcomes: Lipkovich et al.

(2020).

Additional complications: Y time-to-event ⇒ outcome event = competing risk for

intercurrent event. Naive analyses conditioning on observed intercurrent event:

Compares non-randomized populations.

Immortal bias: patients immortal until observation of S.

Rufibach & Yung Answering Old Questions with New Tools

Backup: Subgroups by post-randomization event - principal stratification #99 /

121



Sensitivity analyses!

Assumptions for estimation (see backup) unverifiable:

“Across-world”⇒ even with infinite number of observations we could not test

them.

Only verifiable if we could observe both, patient receives control in one world and

treatment in other.

scientific knowledge + sensitivity analyses
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Conclusions principal stratification

Conclusions:

Many relevant examples in drug development.

Scientific question typically not primary, but important to characterize treatment

effect in subgroups built by intercurrent events, such as ADA or CAR-T. Both

explicitly requested by HAs!

Naive analyses often standard: Unclear estimand ⇒ causal conclusion unclear.

Complex question ⇒ complex analysis needed.

Assumptions needed: scientific input + sensitivity analyses.
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Bornkamp et al. (2021)

Markdown:

https://oncoestimand.github.io/princ_

strat_drug_dev/princ_strat_example.html

BBS seminar:
http://bbs.ceb-institute.org/?p=1587
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Effective statistician podcast,
Björn Bornkamp and Kaspar Rufibach:

https://theeffectivestatistician.com/

a-deep-dive-into-principal-stratification-and-causal-inference
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Kong et al. (2021)

Github repository: https://github.com/

openpharma/BBS-causality-training

Talk Dominik in BBS seminar:
http://bbs.ceb-institute.org/?p=1668
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Agenda

1 Case study: hematology

2 Case study: treatment switching

3 Impact and conclusions

4 Backup: ICH E9(R1) addendum: Why? And what’s new?

5 Backup: Industry working group Estimands in oncology

6 Backup: Subgroups by post-randomization event - principal stratification

7 Backup: Estimation of average causal effect

8 Backup: Estimation of principal effects
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Backup: Estimation of average causal effect
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Estimation of average causal effect

Key assumptions:

Exchangeability: Counterfactual outcomes independent of treatment assignment

⇔ Y (1) and Y (0) independent of Z . Trivially fulfilled in RCT. Via propensity

scores otherwise.

Consistency: No multiple versions of treatment ⇔ individual’s PO under

observed exposure IS her observed outcome ⇔
E(Y (x)|Z = x) = E(Y |Z = x), x = 0, 1.

X (covariates)

Z (treatment)

Y (outcome)
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Estimation of average causal effect
Key assumptions:

Exchangeability: Counterfactual outcomes independent of treatment assignment

⇔ Y (1) and Y (0) independent of Z . Trivially fulfilled in RCT. Via propensity

scores otherwise.

Consistency: No multiple versions of treatment ⇔ individual’s PO under

observed exposure IS her observed outcome ⇔
E(Y (x)|Z = x) = E(Y |Z = x), x = 0, 1.

E(Y (1)− Y (0))
linearity of E

= E(Y (1))− E(Y (0))

exchangeability
= E(Y (1)|Z = 1)− E(Y (0)|Z = 0)

consistency
= E(Y |Z = 1)− E(Y |Z = 0).

So - why do we randomize?

To balance covariates? NO!

Covariates do not appear at all in above computation!

Randomization generates equal distributions (in both groups) of potential

outcomes!
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For example, one would be extremely hard
pressed to find a statistics textbook,

even at the graduate level, containing a
mathematical proof that randomization indeed
produces unbiased estimates of the quantities

we wish estimated – i.e., efficacy of
treatments or policies.

Judea Pearl, American computer scientist
and philosopher

Pearl (2009)
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Estimation of average causal effect

Observational study:

Decision between Z = 0 and Z = 1 might depend on X (measured or

unmeasured).

Y (1) and Y (0) not independent of Z ⇒ exchangeability violated

⇒ E(Y (1)) 6= E(Y (1)|Z = 1) and E(Y (0)) 6= E(Y (0)|Z = 0).

Patients who receive Z = 1 (for whom we observe Y (1)) might be systematically

different from those who receive Z = 0 (for whom we observe Y (0)).

Patients receiving Z = 0 not representative of overall population.

E(Y (1)− Y (0))
linearity of E

= E(Y (1))− E(Y (0))

(((((exchangeability

6= E(Y (1)|Z = 1)− E(Y (0)|Z = 0)

consistency
= E(Y |Z = 1)− E(Y |Z = 0).
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Backup: Estimation of principal effects
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Assumptions

Randomization not enough to estimate principal effects.

Need assumptions.
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Estimation

SUTVA:

Underpins virtually all estimation methods.

POs for any patient do not change with treatment assigned to other patients.

Infectious diseases: treatment may change depending on who else is vaccinated⇒ violation.

Monotonicity:

S(1) ≥ S(0) ⇒ patients that are ADA+ on control would also be ADA+ on test.

Patient with S(0) = 1 observed ⇒ would know that S(1) = 1 ⇒ bottom-left

stratum in table empty.

Allows estimation of principal stratum prevalences.
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Estimation

Exclusion-restriction:

Assume Y (0) = Y (1) (no treatment effect) for patients

{S(0) = 0} ∩ {S(1) = 0} and {S(0) = 1} ∩ {S(1) = 1}.

S(0) = 1 S(0) = 0

S(1) = 1 no causal effect of Z on Y {S(1) = 1} ∩ {S(0) = 0}
S(1) = 0 {S(1) = 0} ∩ {S(0) = 1} no causal effect of Z on Y

Randomization Z exclusively affects outcome through intercurrent event S.

Angrist et al. (1996), Joffe et al. (2007).
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Estimation

Joint models, Frangakis and Rubin (2002):

Model for outcome given PS membership: Y (0),Y (1)|S(1), S(0).

Model for PS membership S(0), S(1).

Multiply likelihoods ⇒ joint model for Y and S.

Treat unobserved potential outcomes as missing data ⇒ integrate out to define

likelihood.

Can easily include covariates in either model.

Use (weakly informative) priors to govern “strength” of assumption, e.g.

monotonicity.

Application: Magnusson et al. (2019), Public Assessment Report of the European

Medicines Agency (EPAR): European Medicines Agency, Committee for Medicinal

Products for Human Use (2019).
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Estimation approaches: principal ignorability

Principal ignorability (PI, or conditional independence):

Approach very similar to propensity scoring in observational studies.

Specify separate models for Y and S.

Conditional on baseline covariates X : Y (0) and S(1) independent.

X : all variables that confound Y (0) and S(1) ⇒ once X are known, S(1)

provides no further information on Y (0) (+ vice versa):

p(Y (0)|X , S(1)) = p(Y (0)|X ).

Allows modeling of Y (0) and S(1) just based on X . Unobserved outcome not

needed in model.

Assumption is across worlds.
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Estimation approaches: principal ignorability

Estimand of interest:

P(Y (1) > t|S(1) = 1)− P(Y (0) > t|S(1) = 1).

Estimation:

P(Y (1) > t|S(1) = 1): survival function in ADA+ in treatment arm.

P(Y (0) > t|S(1) = 1): tricky, because Y (0) and S(1) never jointly observed.

PI allows estimation of second quantity just based on X .

Randomization is key:

Ensures that relationship X − S same in both groups.

Allows prediction of PS membership in control group using model from treatment

group.
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Estimation under principal ignorability for ADA example

Estimate P(S(1) = 1|X ) on treatment arm using logistic regression.

Use predicted probabilities as weights for patients in control arm ⇒ make

samples comparable.

Compute effect measure of interest.

Alternatives:

Multiple imputation, i.e. impute S(1) for control patients. Properly

accounts for uncertainty in estimated weights!

Plain regression adjustment.

Matching.

See propensity score literature for assessment of methods, e.g. Austin (2011).
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Estimation under principal ignorability for ADA example

Choice of X :

Adjust for all confounders that make Y (1) and S(0) (+ vice versa) independent.

Only adjust for X that confound Y and S across worlds: predictors of S and Y .

Similar to observational studies: X = predictors of treatment and outcome.

Do not include covariates that “only” help predict S but have no impact on Y .

Similar to considerations for observational studies.
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R version and packages used to generate these slides:

R version: R version 4.1.1 (2021-08-10)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: prodlim

This document was generated on 2021-12-14 at 16:35:43.
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