Follow-up time in clinical trials with a time-to-event endpoint: Redefining the question(s)

Kaspar Rufibach Methods, Collaboration, and Outreach Group, Roche Basel ISCB43, Newcastle, 22nd August 2022

Paper written within Oncology estimand WG

Lynda Grinsted, AstraZeneca

Jiang Li, BeiGene

Yue Shentu, Daiichi Sankyo

Hans Jochen Weber, Novartis

Cheng Zheng, Zentalis

Jiangxiu Zhou, J&J

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

R. Marcus, A. Davies, K. Ando, W. Klapper, S. Opat, C. Owen, E. Phillips, R. Sangha, R. Schlag, J.F. Seymour, W. Townsend, M. Trněný, M. Wenger, G. Fingerle-Rowson, K. Rufibach, T. Moore, M. Herold, and W. Hiddemann

ABSTRACT

BACKGROUND

Rituximab-based immunochemotherapy has improved outcomes in patients with follicular lymphoma. Obinutuzumab is a glycoengineered type II anti-CD20 monoclonal antibody. We compared rituximab-based chemotherapy with obinutuzumabbased chemotherapy in patients with previously untreated advanced-stage follicular lymphoma.

METHODS

We randomly assigned patients to undergo induction treatment with obinutuzumabbased chemotherapy or rituximab-based chemotherapy. Patients with a response received maintenance treatment for up to 2 years with the same antibody that they had received in induction. The primary end point was investigator-assessed progressionfree survival.

RESULTS

A total of 1202 patients with follicular lymphoma underwent randomization (601 patients in each group). After a median follow-up of 34.5 months (range, 0 to 54.5), a planned interim analysis showed that obinutuzumab-based chemotherapy resulted

Follow-up quantification

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

R. Marcus, A. Davies, K. Ando, W. Klapper, S. Opat, C. Owen, E. Phillips, R. Sangha, R. Schlag, J.F. Seymour, W. Townsend, M. Trněný, M. Wenger, G. Fingerle-Rowson, K. Rufibach, T. Moore, M. Herold, and W. Hiddemann

ABSTRACT

BACKGROUND

Rituximab-based immunochemotherapy has improved outcomes in patients with follicular lymphoma. Obinutuzumab is a glycoengineered type II anti-CD20 monoclonal antibody. We compared rituximab-based chemotherapy with obinutuzumabbased chemotherapy in patients with previously untreated advanced-stage follicular lymphoma.

METHODS

We randomly assigned patients to undergo induction treatment with obinutuzumabbased chemotherapy or rituximab-based chemotherapy. Patients with a response received maintenance treatment for up to 2 years with the same antibody that they had received in induction. The primary end point was investigator-assessed progressionfree survival.

RESULTS

A total of 1202 patients with follicular lymphoma underwent randomization (601 patients in each group). After a median follow-up of 34.5 months (range, 0 to 54.5), a planned interim analysis showed that obinutuzumab-based chemotherapy resulted

Kaspar Rufibach

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

R. Marcus, A. Davies, K. Ando, W. Klapper, S. Opat, C. Owen, E. Phillips, R. Sangha, R. Schlag, J. F. Symour, W. Townsend, M. Trněný, M. Wenger, G. Fingerle-Rowson, K. Rufibach, Moore, M. Herold, and W. Hiddemann

ABSTRACT

BACKGROUND

Rituximab-based immunochemotherapy has improved outcomes in patients with follicular lymphoma. Obinutuzumab is a glycoengineered type II anti-CD20 monoclonal antibody. We compared rituximab-based chemotherapy with obinutuzumabbased chemotherapy in patients with previously untreated advanced-stage follicular lymphoma.

METHODS

We randomly assigned patients to undergo induction treatment with obinutuzumabbased chemotherapy or rituximab-based chemotherapy. Patients with a response received maintenance treatment for up to 2 years with the same antibody that they had received in induction. The primary end point was investigator-assessed progressionfree survival.

RESULTS

A total of 1202 patients with follicular lymphoma underwent randomization (601 patients in each group). After a median follow-up of 34.5 months (range, 0 to 54.5), a planned interim analysis showed that obinutuzumab-based chemotherapy resulted

Kaspar Rufibach

Follow-up quantification

What do these 34.5 months mean?

What do these 34.5 months mean?

What can we conclude from it?

Nothing!

Nothing!

Do not report such numbers at all!

What do trialists believe 34.5 months means?

What do trialists believe 34.5 months means?

Shuster (1991): interviews with oncologists.

"Follow-up among those who did not have the event yet."

"Follow-up among those who did not have the event yet."

"Follow-up of all patients."

"Follow-up among those who did not have the event yet."

"Follow-up of all patients."

"Time from trial entry to clinical cut-off date."

"Follow-up among those who did not have the event yet."

"Follow-up of all patients."

"Time from trial entry to clinical cut-off date."

"Censoring distribution, estimated through inverse KM."

What do trialists want to know?

"Maturity" of the estimated survival function.

"Maturity" of the estimated survival function.

"Stability" of the estimated survival function.

"Maturity" of the estimated survival function. "Stability" of the estimated survival function.

Time interval where Kaplan-Meier estimate is "valid".

"Maturity" of the estimated survival function. "Stability" of the estimated survival function. Time interval where Kaplan-Meier estimate is "valid".

"Quality" of follow-up.

"Stability"?

"Stability"?

'Validity''?

Kaspar Rufibach

"Stability"?

'Validity''?

"Quality"?

"Stability"?

"Validity"?

"Quality"?

Trials compared based on vague concept of "follow-up".

Kaspar Rufibach

Follow-up quantification

"Follow-up quantification":

"Follow-up quantification":

• Unclearly defined concept. Confusion!

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!
- Precise computation rarely mentioned in publication. Comparability!

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!
- Precise computation rarely mentioned in publication. Comparability!

Proposal:

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!
- Precise computation rarely mentioned in publication. Comparability!

Proposal:

• Inspiration from estimand framework to start with scientific question(s) trialists want answers to.

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!
- Precise computation rarely mentioned in publication. Comparability!

Proposal:

- Inspiration from estimand framework to start with scientific question(s) trialists want answers to.
- Analyze existing quantities.

"Follow-up quantification":

- Unclearly defined concept. Confusion!
- Different quantities used to "answer" question. Heterogeneity!
- Precise computation rarely mentioned in publication. Comparability!

Proposal:

- Inspiration from estimand framework to start with scientific question(s) trialists want answers to.
- Analyze existing quantities.
- Extend considerations to 2-sample case. Separately for PH and non-PH.

One-sample case

PFS (months)

Commonly used quantities

Follow-up quantifier	Patient subset	Primary event	Censoring: administrative	Censoring: LTFU	ссор
Observation time regard- less of censoring		event	event	event	ignored
Observation time for	censored		event	event	ignored
those censored	event	excluded			
Time to censoring		censored	event	event	ignored
Time to CCOD, Potential		ignored	ignored	ignored	event
follow-up					
Known function time	censored		event	event	ignored
	event	ignored			event
Korn's potential follow-up		Generalization of time to censoring, estimates $P(under follow-up at t)$, distin-			
time		guishes lost-to-follow-up and administrative censoring.			
Potential follow-up con-	censored		ignored	ignored	event
sidering events	event	event			ignored
One-sample case, second CCOD

One-sample case, second CCOD

What do trialists really want to know?

Term	Question	How to best answer
------	----------	--------------------

Term	Question	How to best answer
Precision	How precise is estimate of underlying	Pointwise CIs or confidence bands.
	true survival function S_X ?	

Term	Question	How to best answer
Precision	How precise is estimate of underlying	Pointwise CIs or confidence bands.
	true survival function S_X ?	
Reliability	How far out to extend KM estimate?	Pointwise CIs or confidence bands. Dis-
		regard KM estimate if less than m pa-
		tients remain at risk.

Term	Question	How to best answer
Precision	How precise is estimate of underlying	Pointwise CIs or confidence bands.
	true survival function S_X ?	
Reliability	How far out to extend KM estimate?	Pointwise CIs or confidence bands. Dis-
		regard KM estimate if less than m pa-
		tients remain at risk.
Stability	How much can KM estimate possibly	Consider all currently censored patients
	change in future data snapshot?	to either (1) have event day after cen-
		soring or (2) being censored at latest ob-
		served event time. Betensky (2015).

Term	Question	How to best answer
Precision	How precise is estimate of underlying	Pointwise CIs or confidence bands.
	true survival function S_X ?	
Reliability	How far out to extend KM estimate?	Pointwise CIs or confidence bands. Dis-
		regard KM estimate if less than m pa-
		tients remain at risk.
Stability	How much can KM estimate possibly	Consider all currently censored patients
	change in future data snapshot?	to either (1) have event day after cen-
		soring or (2) being censored at latest ob-
		served event time. Betensky (2015).
Information	How much of information necessary to	Power depends on inverse of variance of
	achieve targeted power for hypothesis	parameter of interest.
	test, either for milestone timepoint or	
	median, has been collected?	

No "measure of follow-up" needed whatsoever!

Two-sample case

Why different from one-sample case?

Two-sample case

Why different from one-sample case?

• Interest in relative effect.

Why different from one-sample case?

- Interest in relative effect.
- Proportional (PH) vs. non-proportional hazards (NPH).

Two-sample case - PH

Gallium: PFS at two CCODs.

PFS (months)

What does power of logrank (any) test depend on in general?

What does power of logrank (any) test depend on in general?

Inverse of variance of parameter of interest.

What does power of logrank (any) test depend on in general?

Inverse of variance of parameter of interest.

Only under PH and for unweighted logrank test proportional to #events!

Term	Question	How to best answer
Precision	How precise is HR estimate?	CI.
Stability	How much can HR estimate change in	If PH assumption applies then estimate
	future data snapshot?	of HR will (on average) simply become
		more precise over time.
Information	How much of information necessary to	Information fraction $d_{\rm int}/d_{\rm fin}$.
	achieve targeted power for hypothesis	
	test for HR within group-sequential de-	
	sign has already been collected?	
PH (reliability)	Do hazard functions remain propor-	Standard tools to assess PH, e.g. plot
	tional?	nonparametric estimates of (cumulative)
		hazard functions over time, and ratio
		thereof, or hypothesis tests.
Censoring pattern	Is censoring distribution same in both	Plot nonparametric estimates of censor-
	arms? Are distributions of censoring rea-	ing distribution per arm, potentially split
	sons same in both arms?	by censoring reason.

"We need enough FU for safety."

"We need enough FU for safety."

HTA assessments: use FU to assess "Evidence base sufficient for evidence synthesis?"

Vague questions!

Vague questions!

No FU-quantifier whatsoever can answer these questions!

Vague questions!

No FU-quantifier whatsoever can answer these questions!

Formulate questions precisely!

More follow-up is better in any case!

More follow-up is better in any case!

Depends on quantity of interest.

• Follow-up quantifiers used in literature highly heterogeneous.

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.
- No hope that any of these questions can be answered with one single number, however defined.

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.
- No hope that any of these questions can be answered with one single number, however defined.

PH vs. NPH:

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.
- No hope that any of these questions can be answered with one single number, however defined.

PH vs. NPH:

Assumption matters for stability!

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.
- No hope that any of these questions can be answered with one single number, however defined.

PH vs. NPH:

- Assumption matters for stability!
- NPH: need to chose effect measure.

- Follow-up quantifiers used in literature highly heterogeneous.
- Focus on scientific question, answer that using suitable quantities: precision, stability, information, assumptions for any quantity of interest.
- No hope that any of these questions can be answered with one single number, however defined.

PH vs. NPH:

- Assumption matters for stability!
- NPH: need to chose effect measure.
- Information depends on #events (PH) or many more quantities (NPH).

Do not provide a quantification of follow-up.

Do not provide a quantification of follow-up.

Not only useless, but confusing.

Paper: https://arxiv.org/abs/2206.05216.

Markdown with all code: https://oncoestimand.github.io/quantFU/quantFU.html.

Oncology estimand WG: http://www.oncoestimand.org.

Thank you for your attention.

kaspar.rufibach@roche.com http://go.roche.com/dss-mco

http://www.kasparrufibach.ch

- ✓ numbersman77
- O numbersman77
- Betensky, R. A. (2015). Measures of follow-up in time-to-event studies: Why provide them and what should they be? *Clin Trials*, **12**(4), 403–408.
- Shuster, J. J. (1991). Median follow-up in clinical trials. J. Clin. Oncol., 9(1), 191-192.

Backup

Term	Question	How to best answer

Term	Question	How to best answer	
Stability	How much can HR estimate change in	If PH assumption applies then estimate	
	future data snapshot?	of HR will (on average) simply become	
		more precise over time.	

Term	Question	How to best answer	
Stability	How much can HR estimate change in	If PH assumption applies then estimate	
	future data snapshot?	of HR will (on average) simply become	
		more precise over time.	

• Exclusively relying on PH to "predict" future course of the trial: strong and statistically motivated assumption.

Term	Question	How to best answer	
Stability	How much can HR estimate change in	If PH assumption applies then estimate	
	future data snapshot?	of HR will (on average) simply become	
		more precise over time.	

- Exclusively relying on PH to "predict" future course of the trial: strong and statistically motivated assumption.
- Drug development perspective: stability assessed also based on accumulating data, not "only" on PH assumption.

Term	Question	How to best answer	
Stability	How much can HR estimate change in	If PH assumption applies then estimate	
	future data snapshot?	of HR will (on average) simply become	
		more precise over time.	

- Exclusively relying on PH to "predict" future course of the trial: strong and statistically motivated assumption.
- Drug development perspective: stability assessed also based on accumulating data, not "only" on PH assumption.

Stability cannot be assessed using whatever measure of follow-up!

Results for Gallium (PH)

Precision, stability, information

	CCOD 2016-01-31	CCOD 2019-10-31
HR	0.66	0.76
95% CI	[0.51, 0.85]	[0.62, 0.92]
Number of events <i>d</i>	245	419
Proportion of patients with event	20.4%	34.9%

Table: Key efficacy results for Gallium.

milestone	treatment arm	CCOD 2016-01-31	CCOD 2019-10-31
36	Rituximab	0.73 [0.66, 0.80]	0.76 [0.71, 0.79]
36	Gazvya	0.80 [0.73, 0.85]	0.82 [0.79, 0.86]
36	Difference Obinutuzumab - Rituximab	0.07 [0.01, 0.12]	0.07 [0.02, 0.12]
60	Rituximab	-	0.63 [0.58, 0.68]
60	Gazvya	-	0.70 [0.65, 0.75]
60	Difference Obinutuzumab - Rituximab	-	0.07 [0.02, 0.13]

Table: Milestone KM estimates for Gallium.

Quantification of follow-up, CCOD1

Quantification of follow-up, CCOD2

Quantification of follow-up

Quantity	CCOD	2016-	CCOD	2019-	Δ	$\Delta\%$
	01-31		10-31			
Observation time regardless of censoring	28.8		62.0		33.2	+115%
Observation time for those event-free	31.5		71.2		39.8	+126%
Time to censoring	32.6		71.7		39.1	+120%
Time to CCOD	36.5		81.5		45.0	+123%
Known function time	32.9		75.0		42.0	+128%
Korn potential follow-up	36.2		81.2		44.9	+124%
Potential follow-up consider-	33.4		75.5		42.1	+126%
ing events						

Table: Different quantifications of follow-up for Gallium, in months.

Delayed separation example

Two-sample case - NPH: delayed separation

Delayed separation

PFS (months)

Milestone or median difference, RMST, variants of logrank test.

Milestone or median difference, RMST, variants of logrank test.

Precision depends on inverse of variance of parameter of interest.

Milestone or median difference, RMST, variants of logrank test.

Precision depends on inverse of variance of parameter of interest.

No hope #events tells us everything!

Variance of RMST depends on:

- total number of patients,
- randomization ratio,
- KM estimate of the pooled sample,
- estimated censoring distribution in each arm (which can be taken as pooled if random censoring is assumed),
- observed number of events at t_0 ,
- observed number of patients still at risk at t_0 .

Term	Question	How to best answer

Term	Question	How to best answer
Precision	How precise is estimate to quantify effect	CI.
	of interest?	

Term	Question	How to best answer
Precision	How precise is estimate to quantify effect	CI.
	of interest?	
Stability	How much can effect estimate change in	Look at extreme scenarios as proposed
	future data snapshot?	by Betensky (2015).

Term	Question	How to best answer
Precision	How precise is estimate to quantify effect	CI.
	of interest?	
Stability	How much can effect estimate change in	Look at extreme scenarios as proposed
	future data snapshot?	by Betensky (2015).
Information	How much of information necessary to	Not only related to #events / informa-
	achieve targeted power for hypothesis	tion fraction.
	test for effect of interest has already been	Effect measure specific.
	collected, if group-sequential design is	
	used?	

Term	Question	How to best answer
Precision	How precise is estimate to quantify effect	CI.
	of interest?	
Stability	How much can effect estimate change in	Look at extreme scenarios as proposed
	future data snapshot?	by Betensky (2015).
Information	How much of information necessary to	Not only related to #events / informa-
	achieve targeted power for hypothesis	tion fraction.
	test for effect of interest has already been	Effect measure specific.
	collected, if group-sequential design is	
	used?	
PH	Not applicable.	

Term	Question	How to best answer
Precision	How precise is estimate to quantify effect	CI.
	of interest?	
Stability	How much can effect estimate change in	Look at extreme scenarios as proposed
	future data snapshot?	by Betensky (2015).
Information	How much of information necessary to	Not only related to #events / informa-
	achieve targeted power for hypothesis	tion fraction.
	test for effect of interest has already been	Effect measure specific.
	collected, if group-sequential design is	
	used?	
PH	Not applicable.	
Censoring pattern	Same as in PH scenario.	

Trial design

Assumptions:

- Base event rate: 0.012, corresponding to median time-to-event of 60 months.
- Piecewise exponential survival with no effect between 0 and 12 months, HR = 0.65 thereafter.
- In both arms: probability LTFU follows exponential distribution calibrated such that probability amounts to 0.025 at 12 months. Corresponds to median time-to-LTFU of 329 months.
- After ramp-up of 6 months we recruit 42 patients / month until maximal number of 1000 patients.

Trial design

Assumptions:

- Base event rate: 0.012, corresponding to median time-to-event of 60 months.
- Piecewise exponential survival with no effect between 0 and 12 months, HR = 0.65 thereafter.
- In both arms: probability LTFU follows exponential distribution calibrated such that probability amounts to 0.025 at 12 months. Corresponds to median time-to-LTFU of 329 months.
- After ramp-up of 6 months we recruit 42 patients / month until maximal number of 1000 patients.

CCOD after 389 events: power of

- 80.5% for unweighted logrank test,
- 69.7% using RMST difference based on KM estimates between arms, with data-driven restriction time t₀ of lower of two maximal observed times (events and censored) in each arm.
- Based on 10000 simulated trials.

Precision

milestone	treatment arm	KM estimates and 95% CIs
36	Control arm	0.68 [0.62, 0.73]
36	Treatment arm	0.71 [0.66, 0.76]
36	Difference treatment - control	0.04 [-0.03, 0.09]
60	Control arm	0.47 [0.30, 0.65]
60	Treatment arm	0.60 [0.46, 0.73]
60	Difference treatment - control	0.13 [0.05, 0.21]

Table: Milestone estimates for delayed separation example.

Difference of RMST between arms: 2.82 months between arms with 95% CI from -0.35 to 5.98.

Stability

PFS (months)

Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 4.1.1 (2021-08-10)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: reporttools / xtable / rpact / survininer / ggpubr / survival / forcats / stringr / dplyr / purrr / readr / tidyr / tibble / ggplot2 / tidyverse

This document was generated on 2022-08-03 at 12:05:05.