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1. Define ”success”!

2. Definition.

3. Do not compare to power!

4. Where are you centered at?

5. Update after not stopping at interim analysis.

6. Is the mean the right summary?
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Definition
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Assurance

Any endpoint type.

True effect δ.

Estimate δ̂final at final analysis of pivotal trial, based on nfinal observations:

δ̂final ∼ N(δ, σ2
final = σ2/nfinal).

Pivotal trial success if δ̂final ≤ δsuc (think of log hazard ratio).
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What is ”success”?
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Define success

δsuc: can be

Minimal detectable difference (MDD): critical value of hypothesis test on effect scale, effect size such

that trial is “just significant”.

Any other quantity of interest, e.g. effect size that gives 80% power ⇒ target product profile (TPP).
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Assurance

Quantity of interest = power function:

Pδ(δ̂final ≤ δsuc) = Φ
( δsuc − δ

σfinal

)
.

Depends on true effect δ ⇒ assume distribution over δ with density q and average:

ASS(δsuc) = IEδ

(
Pδ(δ̂final ≤ δsuc)

)
=

∫ ∞

−∞
Φ
( δsuc − δ

σfinal

)
q(δ)dδ.

Power averaged over range of potential effect sizes, weighted with how likely we think they are.

O’Hagan et al. (2001), O’Hagan et al. (2005).
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Assurance vs. Bayesian predictive power

Success: δ̂final ≤ δsuc.

δmdd: minimally detectable difference.

δMCID: minimally clinically interesting difference. Make sure δMCID ≈ δmdd.

ASS(δsuc) =

∫ ∞

−∞
Φ
( δsuc − δ

σfinal

)
q(δ)dδ = Pδ(δ̂final ≤ δsuc) =

= P(δ̂final ≤ δsuc,−∞ ≤ δ ≤ δMCID)︸ ︷︷ ︸
BPP(δsuc)

+P(δ̂final ≤ δsuc, δMCID < δ ≤ δmdd)︸ ︷︷ ︸
P(reject but effect irrelevant)

+P(δ̂final ≤ δsuc, δmdd < δ ≤ ∞)︸ ︷︷ ︸
P(average type I error)

.

Assurance: significance ⇒ irrelevant effects + type I errors are ”success”.

Bayesian predictive power (BPP): relevant effects only, Spiegelhalter et al. (1986).

Often, BPP(δmdd) ≈ assurance(δmdd), see Kunzmann et al. (2021).
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Illustration: Time-to-event endpoint

Approximate distribution of estimated log(hazard ratio) θ̂ := log(ĤR):

θ̂ ≈ N(θ, 4/d).

θ = log(HR): true underlying effect, true log-hazard ratio.

d : total number of events in both arms.

1:1 randomized trial: Var(θ̂) = 4/d .

Non-1:1: τ = P(arm A) ⇒ Var(θ̂) = [τ(1− τ)d]−1.
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Example

Assumptions:

Prior based on Phase 2 result: θ̂Phase 2 = log(0.700), based on dprior = 50 events.

Phase 3: 80% power to detect hazard ratio 0.75.

Final analysis after dfinal = 380 events based on estimate θ̂final ∼ N(θ, σ2
final = 4/dfinal).

Minimal detectable difference at final analysis: θsuc = θmdd = log(0.818).

Assurance at start of Phase 3, assuming we know Phase 2 result:

ASS =

∫ ∞

−∞
Pθ(θ̂final ≤ θsuc)ϕµ=log(0.700),σ2=4/50(θ)dθ = 0.697.

Kaspar Rufibach Bayesian Predictive Power in drug development What is ”success”? #11



Do not compare assurance to power!
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Question from decision-makers: “Assurance is smaller than power?”

Assurance smaller than Power if power ≥ 0.5 for commonly used priors.
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Assurance is smaller than power

Normal prior: show using explicit formulas.

Rufibach et al. (2016a): any symmetric and unimodal prior.

Dallow and Fina (2011).:

Make sure you calibrate decision-makers!
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Where are you centered at?
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Prior sample size and assurance
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Prior sample size and assurance

−0.6 −0.4 −0.2 0.0 0.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
de

ns
ity

Normal prior density for θ

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
true hazard ratio

θ = log(true hazard ratio)

MDDNumber of prior events and assurance:

50 / 0.70

Kaspar Rufibach Bayesian Predictive Power in drug development Where are you centered at? #17



Prior sample size and assurance
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Prior sample size and assurance
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Prior sample size and assurance
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Prior sample size and assurance
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Prior sample size and assurance
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If prior mean closer to H0 than θsuc
⇒ decreasing prior sample size increases assurance!

Be very careful using assurance
to chose P2 sample size!
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Update assurance after not stopping at interim analysis
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Update after interim (blinded or unblinded)

Rufibach et al. (2016b).
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How does assurance change if we
do not stop at a futility interim?
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Futility interim analysis only

Blinded futility interim passed with boundary HR ≤ 1: we know that

0 < HR ≤ 1 or

θ̂interim ∈ (−∞, log(1)].

How does assurance change after this interim?
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Futility interim analysis: factors in assurance formula
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Futility interim analysis only - comments

After not stopping at interim, assurance increases from 0.697 to 0.801.

Why does assurance increase after not stopping?

Prior with mean log(0.7) assigns weight to hazard ratios smaller than θsuc = log(0.818).

Not stopping shifts mass of prior qprior to the left of 1 for qposterior ⇒ more weight on hazard ratios ≤ θsuc.

Together with small increase in conditional power accounts for higher assurance after not stopping.
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Does assurance decrease or increase after not stopping?

Trial does not stop at futility interim ⇒ assurance increases.

Trial does not stop at efficacy interim ⇒ assurance decreases.

Extent depends on configuration of

prior distribution,

minimal detectable difference at final analysis θsuc,

variability of final analysis estimate,

efficacy interim boundary θefficacy,

futility interim boundary θfutility.
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Choice of prior
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Choice of prior: bathtub effect

Kaspar Rufibach Bayesian Predictive Power in drug development Choice of prior #32



Choice of prior

So far Normal prior.

Flat prior often associated with non-informativeness.

Not necessarily the case for assurance!

See Rufibach et al. (2016a) for details.

What is the problem?
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Recall definitions and example

Power function:

T (θ) := Pθ(θ̂final ≤ θsuc) = Φ
( θsuc − θ

σfinal

)
.

Assurance is averaged power:

ASS = IEθ T (θ) =

∫ ∞

−∞
Pθ(θ̂final ≤ θsuc)qprior(θ)dθ.

Via simulation (law of large numbers):

Draw a sample (θ̂1, . . . , θ̂M) from prior.

Compute T (θ̂1), . . . ,T (θ̂M).

Assurance = average over these values.
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Simulate assurance in example

Histogram of values of T(θ) for θ sampled from Normal prior
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1 Is mean really appropriate number to summarize this histogram?

2 Can we compute this density?
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Density of power T (Θ)

Assume prior r.v. Θ with PDF q, CDF Q, and define Y := T (Θ) with PDF g , CDF G .

Use transformation theorem and rule about derivative of an inverse to get:

G(y) = 1− Q(θsuc − σfinalz),

g(y) = q(θsuc − σfinalz)
σfinal

ϕ(z)

with z := Φ−1(y) and ϕ the standard Normal density function.

For Normal prior Θ ∼ N(θ0, σ2
0):

G(y) = 1− Φ(β − αz),

g(y) = αϕ(β − αz)
[
ϕ(z)

]−1
,

with

α = σfinal/σ0 > 0,

β = (θsuc − θ0)/σ0.
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Simulate assurance in example

Histogram of values of T(θ) for θ sampled from Normal prior

Value of power T(θ)

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

sample size: 1'000'000

Kaspar Rufibach Bayesian Predictive Power in drug development Choice of prior #38



Simulate assurance in example

Histogram of values of T(θ) for θ sampled from Normal prior
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Density g as a function of α, for β = 0
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When summarizing g with assurance ⇒ unimodal density most sensible?

α = 1: transition between“bathtub-shaped” (even convex?) and unimodal (obviously not concave).

Make qualitative features precise.
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Density g as a function of β, for α = 1
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β determines skewness of g .

Make qualitative features precise.
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Qualitative features of g

Theorem (Qualitative features of g)

We have the following statements:

1 If α = 1, then g is 
strictly decreasing for β < 0,

constant for β = 0,

strictly increasing for β > 0.

on [0, 1]. Minima and maxima of g are accordingly either at 0 or 1.

2 If α ̸= 1 then g has a minimum at ym if α < 1,

has a maximum at ym if α > 1,

for ym = Φ(αβ/(α2 − 1)). Furthermore, gis decreasing for y < ym and increasing for y > ym if α < 1,

is increasing for y < ym and decreasing for y > ym if α > 1.

Proof: Compute g ′, g ′′, discuss these.
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Why? And what does it mean?

Simplest case: α = 1, β = 0 ⇒ dprior = dfinal, θ0 = θsuc ⇒ g uniform.

Prior and distribution of pivotal effect size have same variance ⇒ power becomes uniform, either you beat θsuc

with θ̂final or not, with equal probability.

Why P(extreme assurance values) so high if α < 1? d0 < dfinal ⇒ high variance of prior ⇒ high probability to

have extreme HRs ⇒ power for these is either almost 0 or 1.

g unimodal if α > 1 ⇒ σfinal > σ0 ⇒ dfinal < d0 ⇒ prior number of events larger than Phase 3 events.

Unrealistic in clinical development.
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Priors explored

How should we choose prior to get unimodal power distribution?

Explored priors:

truncated Normal,

Uniform,

Uniform prior with Normal tails.

None of them provides a unimodal density of power values under realistic assumptions.

Prior potentially informs assurance substantially.

Rufibach et al. (2016a).
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1. Define ”success”!

2. Definition.

3. Do not compare to power!

4. Where are you centered at?

5. Update after not stopping at interim analysis.

6. Is the mean the right summary?
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Discussion

Be clear about definitions.

Assurance ̸= power ⇒ recalibrate stakeholders.

Update assurance after not stopping at interim analysis. Extension to >1 interims straightforward.

Density of power values bathtub-shaped for typical development scenario.

Sensible to summarize this distribution in one number which we call assurance?

Prior with large variance not necessarily uninformative!

R package bpp on CRAN: Rufibach et al. (2022).
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Thank you for your attention.

kaspar.rufibach@roche.com

Slides can be downloaded on

www.kasparrufibach.ch
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R version and packages used to generate these slides:

R version: R version 4.2.3 (2023-03-15 ucrt)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: rpact / bpp / mvtnorm / reporttools / xtable
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