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Extended version of this talk, incl. recording
(BBS talk from earlier this year):

www.kasparrufibach

Kaspar Rufibach Stop the abuse! #2

http://www.kasparrufibach.ch


Take home messages
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Need accurate estimates of
P(AE) + comparison between arms.

IP and (1 - KM) biased irrespective
of what we use them for.

Bias ”does not cancel out”when
comparing P(AE) between arms in RCT.

Kaspar Rufibach Stop the abuse! Take home messages #4



Let me explain.
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Estimation of P(AE)
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What does the incidence proportion estimate?

Incidence proportion in interval from 0 to t:

ÎPE (t) =
Number of patients with AE in [0, t] and that this AE is observed

nE
.

ÎPE (t) estimates:

P(AE happens in [0, t] and that this AE is observed before censoring).

ÎPE (t) ≤ P̂(AE happens in [0, t]) ⇒ ÎPE (t) underestimates absolute AE risk.
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With censoring it is unclear
which quantity ÎPE is estimating.

Kaspar Rufibach Stop the abuse! Estimation of P(AE) #8



Simple incidence proportion is biased
if we have unequal follow-up or censoring.
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Estimate P(AE) using time-to-AE
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Consider time-to-first-AE

Redefine question: Consider time-to-first-AE.

Estimate P(AE happens in [0, t]) using 1 - Kaplan-Meier.

Correctly accounts for censoring.

Consistently estimates AE risk at t, accounting for varying follow-up.
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What does (1 - K̂M) with censoring of CEs estimate?

Administrative censoring: patients may still experience event at later time point.

Not for CEs!

What does (1 - K̂M) with censoring of CEs estimate?

Violates independent censoring assumption:

Patient censored at death will NEVER experience AE.

Patients who will never experience AE treated as if they could still have one.

Less than 100% of patients experience AE before death:

Some die before AE ⇒ P(AE) < 1.

But (1 - K̂M) approaches 1 ⇒ naive (1 - K̂M) overestimates P(AE).
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1 - Kaplan-Meier is biased
if we have competing events.
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Is this relevant at all?

How large can the bias be?
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The SAVVY project
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9 pharma
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9 pharma + 3 universities
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The SAVVY project

Data from 17 RCTs in various indications.

200 - 7171 patients.

186 AEs.

SAVVY webpage
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Goal: compare bias of estimators.

What is ”gold standard”?
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Gold standard: Aalen-Johansen estimator

What is ”best” estimator to benchmark against?

Estimator Accounts for Accounts for

censoring CEs

Incidence proportion No Yes

1 - Kaplan-Meier Yes No

Aalen-Johansen estimator Yes Yes

All nonparametric: no constant hazard assumption.

Aalen-Johansen:

Generalizes Kaplan-Meier to competing risk and general multistate models.

No censoring: Aalen-Johansen = incidence proportion.

No competing events: Aalen-Johansen = (1 - Kaplan-Meier).
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Bias of common estimators of AE risk
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Estimation of AE risk

Incidence proportion:

Accounts for CEs but not censoring.

Underestimation of P(AE) up to factor THREE!

1 - Kaplan-Meier:

Accounts for censoring but not CEs.

Overestimation of P(AE) up to factor FIVE!
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SmPC frequency categories

SmPC frequency categories:

Very rare: < 0.01%.

Rare: < 0.1%.

Uncommon: < 1%.

Common: < 10%.

Very common: ≥10%.

Potential impact on (labeling +) reimbursement!
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Bias of common estimators of relative AE risk
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Estimation of relative AE risk

Incidence proportion:

Over- and underestimation observed.

Overestimation of RR up to factor of almost 3.

1 - Kaplan-Meier:

Over- and underestimation observed.

Underestimation of RR up to factor of >4.
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IQWiG categorization of evidence

IQWiG categorization of evidence applied to HR, IQWiG (2017):

No effect: 1 included in CI,

Minor: upper bound of CI in interval [0.9; 1) for HR < 1.

Considerable: upper bound of CI in interval [0.75; 0.9).

Major: upper bound < 0.75.

Effect measure may have large impact on decision.

Potential impact on (labeling +) reimbursement!
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Arm-wise bias does not cancel out
in relative comparisons.

Comparison of ESTIMATORS.

Irrespective of what you choose
as ESTIMAND.
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Ultimately: not a question whether
it matters!

Use appropriate statistical method
from the start!
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Now we have seen what does not work.

But what does work?

Aalen-Johansen: properly accounts for
varying follow-up times and

competing risks.
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Take home messages
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Need accurate estimates of
P(AE) + comparison between arms.

IP and (1 - KM) biased irrespective
of what we use them for.

Bias ”does not cancel out”when
comparing P(AE) between arms in RCT.
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How would good look like in ten years?

Clear specification of goal:

Determine and monitor safety profile of drug.

Assess causality of (unexpected) safety signals.

Balance risk & benefit.

Estimate risk (probability) of an AE and enable safety differentiation.

Predict patient-level drivers of AEs.

Support characterisation of benefit in terms of comorbidities.

Derive estimand.

Inform data collection.

Chose appropriate estimator / statistical analysis method.
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Call to action!

Estimate disease-specific P(AE)’s, properly discussing therapeutic area specific CEs.

Influence updating of guidelines.

Use Aalen-Johansen in a real clinical trial.
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Resources

SAVVY webpage:

Exemplary code for all methods.

All papers and talks.

Papers:

SAP: Stegherr et al. (2021a).

Methods: Stegherr et al. (2021c).

1-sample: Stegherr et al. (2021b).

2-sample: Rufibach et al. (2022).

Effective statistician podcasts:

About SAVVY: https://theeffectivestatistician.com/

the-analysis-of-adverse-events-done-right-savvy/.

200th episode with 10% most downloaded podcasts:

https://theeffectivestatistician.com/200th-episode/.
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Extended version of this talk, incl. recording
(BBS talk from earlier this year):

www.kasparrufibach
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Thank you for your attention.

kaspar.rufibach@roche.com

http://www.kasparrufibach.ch
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Treatment works
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Estimation of P(AE)

Arm A: control

time since first patient randomized

0 1 2 3 4 5 6

Arm B: treatment

time since first patient randomized

0 1 2 3 4 5 6

2-arm RCT.

10 patients per arm.

All patients randomized on same

day.

All patients observed for 6 months.

P(AE in A) = 3 / 10 = 0.30,

P(AE in B) = 4 / 10 = 0.40.
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Estimation of P(AE): treatment works

Arm A: control

time since first patient randomized

0 1 2 3 4 5 6

Arm B: treatment

time since first patient randomized

0 1 2 3 4 5 6

2-arm RCT.

10 patients per arm.

All patients randomized on same

day.

Hazard ratio for PFS = 0.5, stop

AE recording after PFS event.

P(AE in A) = 1 / 10 = 0.10,

P(AE in B) = 4 / 10 = 0.40.
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Estimation of P(AE): treatment works + staggered entry

Arm A: control

time since first patient randomized

0 1 2 3 4 5 6

Arm B: treatment

time since first patient randomized

0 1 2 3 4 5 6

2-arm RCT.

10 patients per arm.

Patients enter trial over time.

All patients observed until cutoff.

Hazard ratio for PFS = 0.5, stop

AE recording after PFS event.

P(AE in A) = 1 / 10 = 0.10,

P(AE in B) = 4 / 10 = 0.40.
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Before you ask...
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Before you ask...

Focus on bias - what about variability?

Focus today with IP rarely on variability either!

Simulation study for 2-arm comparisons: Stegherr et al. (2021c).

We do not collect data necessary to estimate P(AE) with AJE?

ICH E9(R1) estimands addendum: clinical trial objective dictates data collection

and analytical method!

Clarify clinical trial objective also for analysis of safety!

Proper definition of CE requires understanding and discussion of therapeutic

area.
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Before you ask...

Does normalization by exposure time not solve the problem?

Incidence density. See backup for details.

A priori estimates AE hazard, not P(AE). Can be turned into estimator of P(AE).

Assumes exponentiality of AE hazard.

Incidence density for each CE.

Can we use IP for ”signal detection”or other purposes?

Biases = statistical properties of IP, (1 - KM).

Independent of what we use estimates of P(AE) for!
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Causality

Aalen-Johansen:

Estimates cumulative incidence function.

Censoring: if random, e.g. administrative censoring ⇒ does not destroy causal

interpretation.

Competing events: intervention on observation process differs from intervention

affecting the patient. Young et al. (2020), Rufibach et al. (2022).
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Competing risks and the estimand addendum
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One event – time to AE

0: free of AE 1: event of interest: AEα01(t)
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Add competing event

0: free of AE

1: event of interest: AE

2: competing event
e.g. death

α01(t)

α02(t)
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Competing event vs. intercurrent event

Definition competing event, Gooley et al. (1999):

We shall define a competing risk as an event whose occurrence either pre-

cludes the occurrence of another event under examination or fundamentally

alters the probability of occurrence of this other event.

Definition intercurrent event, ICH (2019):

Events occurring after treatment initiation that affect either the interpretation

or the existence of the measurements associated with the clinical question of

interest.

Intercurrent event definition ≈ competing event definition.

ICH (2019) does not say anything about competing risks though.

Death: competing risk + intercurrent event (?).
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Clinical questions of interest and their estimators
Extending Table 1 in Varadhan et al. (2010).

Clinical question Target of

inference

Estimator Comment

What is hazard /

probability of AE or death,

whatever happens earlier?

Event-free

survival

(”composite”)

Kaplan-Meier 1to1 correspondence

between hazard and

probability.

What is hazard /

probability of AE,

accounting for the

possibility that patients

may die before

experiencing an AE?

Cause-

specific

hazards

Nelson-Aalen - Key measure to compare

groups in RCT.

- Evaluate impact of risk

factors.

Cumulative

incidence

Aalen-

Johansen

- Interest in absolute risk

(”probability”).

- Benefit-risk of an

intervention.

What is hazard /

probability of AE in world

where patients would not

die?

Survival

function

(”hypothetical”)

1 - KM with

censoring

deaths

- Rarely (to say the least)

of clinical interest.

- Maybe for other CEs.

- Estimation: assumption

about ”independence” of

competing events - neither

sensible nor needed!

Kaspar Rufibach Stop the abuse! Competing risks and the estimand addendum #51



Did we get our clinical questions answered?

Yes!

Did we need ICH E9(R1)
language or strategies?

No!
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Conclusions:

Clearly formulate clinical question.

None of the five strategies in the
addendum needed to model competing risk.
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Random variable vs. stochastic process formulation

Endpoints like OS: model using random variable X with CDF F , hazard h, etc.

Competing risk, multistate models:

Avoid random variables: temptation of latent failure time models (backup).

Use stochastic process formulation, see e.g. Beyersmann et al. (2012):

X (t) ∈ {0, 1, 2}, t ≥ 0: state occupied by individual at time t ≥ 0.

X (t) = j if event j has occurred in [0, t].

T := inf{t : Xt ̸= 0}, XT = state occupied at T .

Competing risk data: (T , XT ).

Andersen et al. (1985):

In life history analysis, time and random phenomena occurring in time play an

essential role, and it seems therefore more natural to study life history analysis

in terms of the theory of stochastic processes. Thus, the formulation in

terms of random variables may have contributed to hampering the researchers

working in the field of survival analysis, or failure time analysis, from extending

their otherwise fine methodology to more general life history models.
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Marry competing risk with ICH E9(R1) if you must

Definition of variable in ICH E9(R1) addendum:

The variable (or endpoint) to be obtained for each patient that is required to

address the clinical question.

No one says this must be univariate!

Marry competing risk with ICH E9(R1) if you must:

Attribute Definition

Treatment generic

Population generic

Variable (T ,XT )

Intercurrent event(s) None left from competing risk, maybe others.

Summary measure Depends on clinical question: hazard ratio, cumulative

incidence.

Alternative proposal for general estimands for MSMs: Bühler et al. (2022).

Kaspar Rufibach Stop the abuse! Competing risks and the estimand addendum #55



Competing risk models: population quantities

”Cause-specific survival function”:

Sk(t) = exp[A0j (t)].

Sk is NOT marginal survival function!

Only has this interpretation if competing event time distributions and censoring

distribution are independent.

Then marginal distribution describes event time distribution in world where

competing events do not occur.

Kaspar Rufibach Stop the abuse! Competing risks and the estimand addendum #56



Competing risk models: hazard vs. probability

Transition probabilities in general multistate models:

Plj (s, t) := P(X (t) = j |X (s) = l ,Past).

Competing risk:

P0j (0, t) referred to as cumulative incidence.

Expected proportion of patients experiencing event of type j over course of time.

Cumulative incidence for j = 1, 2:

P(T ≤ t,XT = j) = P0j (0, t)

= P(X (t) = j |X (0) = 0)

=

∫ t

0
P(T > v−)α0j (v)dv

=

∫ t

0
exp

(
−A01(v−)− A02(v−)

)
α0j (v)dv .
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Competing risk models: population quantities

How is competing risk data generated? Two-step simulation process:

1 Determine time T at which event occurs via all-cause hazard α(t).

2 Event type XT for given time T : determined via multinomial experiment that

decides with probability α0j (T )/α(T ) on XT = j .

Beyersmann et al. (2012), Allignol et al. (2011).

Hazards completely determine stochastic behaviour of competing risks process.
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R version and packages used to generate these slides:

R version: R version 4.2.3 (2023-03-15 ucrt)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: ggplot2 / etm / cmprsk / mvna / prodlim / survival / reporttools / xtable

This document was generated on 2023-08-29 at 07:42:20.
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