Decision making versus inference. *p*-values are not the issue.

Kaspar Rufibach, Merck KGaA, Darmstadt, Germany EORTC, 30th September 2025

2002-2006: Swiss Group for Applied Cancer Research (SAKK).

2002-2012: Uni Bern, Stanford, Zurich.

Since 2013: Roche, Merck KGaA.

Kaspar Rufibach, Merck KGaA #2 / 27

Making a clinical decision is a complicated exercise.

It can never be automatized or outsourced.

Even if journals or other stakeholders would like that.

p-values are a scientific tool. Banning them is ridiculous.

Educate people and insist on proper use.

Kaspar Rufibach, Merck KGaA #3 / 27

I will sketch decision-making for pharma trials.

Why would decision-making for a collaborative group trial be different?

Kaspar Rufibach, Merck KGaA #1 / 27

Hypothesis test

Neyman-Pearson

significant vs. non-significant

Kaspar Rufibach, Merck KGaA #2 / 27

Hypothesis test

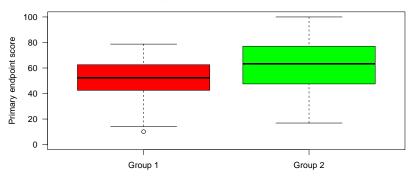
Scientific question: Primary endpoint score different between Group 1 and Group 2?

Null hypothesis H_0 – statement to be rejected:

$$H_0$$
: $\mu_{\text{Group 1}} = \mu_{\text{Group 2}} \Leftrightarrow \delta = \mu_{\text{Group 1}} - \mu_{\text{Group 2}} = 0$.

Alternative hypothesis H_1 – what researcher is interested in:

$$H_1: \delta \neq 0.$$


Set significance level α .

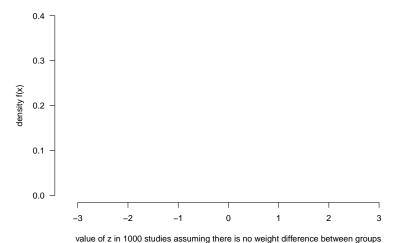
Define effect size to be detected with given power.

Compute sample size.

Hypothesis test

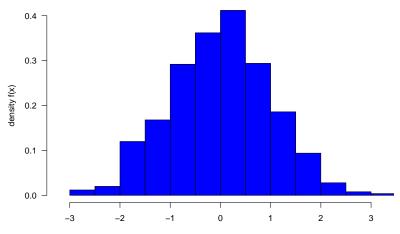
Collect data - draw random sample.

Compute test statistic ⇒ distance between estimated and hypothetical value:


$$z = \frac{\text{estimate} - \text{null value}}{\text{standard error}} = \frac{(51.34 - 63.84) - 0}{4.49} = -2.78$$

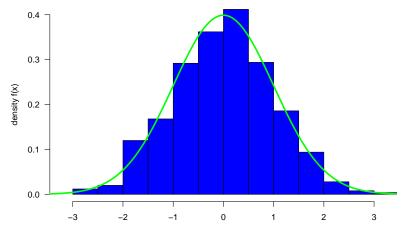
Compare |z| to what would be expected if H_0 were true.

Reject or do not reject H_0 .


Kaspar Rufibach, Merck KGaA #4 / 27

How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.

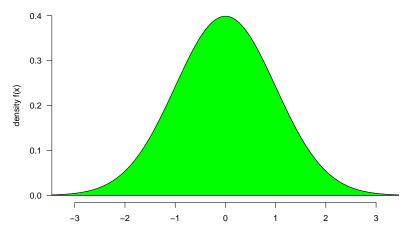
Kaspar Rufibach, Merck KGaA #5 / 27


How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.

value of z in 1000 studies assuming there is no weight difference between groups

Kaspar Rufibach, Merck KGaA #6 / 27

How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.

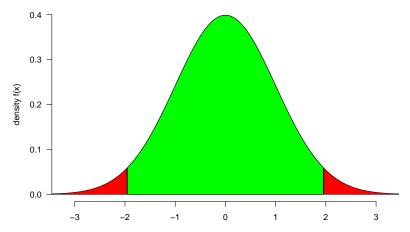


value of z in 1000 studies assuming there is no weight difference between groups

We do not need 1000 studies! But mathematical theory.

Kaspar Rufibach, Merck KGaA #7 / 27

How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.

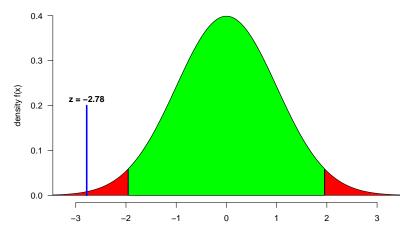


value of z in 1000 studies assuming there is no weight difference between groups

We do not need 1000 studies! But mathematical theory.

Kaspar Rufibach, Merck KGaA #8 / 27

How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.



value of z in 1000 studies assuming there is no weight difference between groups

We do not need 1000 studies! But mathematical theory.

Kaspar Rufibach, Merck KGaA #9 / 27

How large is |z| to be expected if H_0 holds? Assume we could perform 1000 studies for which H_0 were true.

value of z in 1000 studies assuming there is no weight difference between groups

We do not need 1000 studies! But mathematical theory.

Kaspar Rufibach, Merck KGaA #10 / 27

Did we need a p-value to make a decision on H_0 ?

No.

Kaspar Rufibach, Merck KGaA #11 / 27

Significance level, power: operating characteristics.

Pre-specified.

Only maintained if one sticks to pre-specification.

Kaspar Rufibach, Merck KGaA #12 / 27

Significance test

Fisher

p-value

Kaspar Rufibach, Merck KGaA #13 / 27

Significance test: *p*-value

p-value:

- Quantify evidence against H_0 with number independent of test, sample size.
- Combine effect estimate and uncertainty quantification into one number.
- Fisher: perform many related experiments, combine p-values to get to final conclusion at some point. Meta-analysis.
- No decision on null hypothesis! No operating characteristics.

Labels for evidence against null hypothesis:

TABLE 5 A Useful Language for Interpreting p Values		
p < 0.001	Overwhelming evidence	
$0.001 \le p < 0.01$	Strong evidence	
$0.01 \leq p < 0.05$	Some evidence	
$0.05 \le p < 0.10$	Insufficient evidence	
p ≥ 0.10	No evidence	

Pocock et al. (2015).

Kaspar Rufibach, Merck KGaA #14 / 27

Statistical significance: binary decision.

Highly significant, trend towards significance, ...: **MEANINGLESS!**

Kaspar Rufibach, Merck KGaA #15 / 27

Inference vs. decision?

Do we want / need binary decision?

Interest in probability of wrong decision?

Kaspar Rufibach, Merck KGaA #16 / 27

Hypothesis test in drug development:

Rejection of H_0 in properly designed trial: entry ticket for negotations with regulator.

Negotations: effect size, other endpoints, etc.

No automatism!

Experience shows: leads to reasonably sized trials.

Kaspar Rufibach, Merck KGaA #17 / 27

Making a clinical decision is a complicated exercise.

It can never be automatized or outsourced.

Even if journals or other stakeholders would like that.

Kaspar Rufibach, Merck KGaA #18 / 27

A p-value is no substitute for a brain.

Stone and Pocock (2010)

Kaspar Rufibach, Merck KGaA #19 / 27

In many cases published medical literature requires no firm decision: it contributes incrementally to an existing body of knowledge.

Sterne and Smith (2001)

Kaspar Rufibach, Merck KGaA #20 / 27

The reporting of scientific results is not about making decisions, but about collecting, summarizing, and reevaluating evidence.

Blume and Peipert (2003)

Kaspar Rufibach, Merck KGaA #21 / 27

So, why are so many people confused?

p-value can be used to make decision in a hypothesis test.

Conceptually, the two frameworks are independent and have different goals.

Kaspar Rufibach, Merck KGaA #22 / 27

Making a clinical decision is a complicated exercise.

It can never be automatized or outsourced.

Even if journals or other stakeholders would like that.

p-values are a scientific tool. Banning them is ridiculous.

Educate people and insist on proper use.

Kaspar Rufibach, Merck KGaA #23 / 2'

References

- Blume, J. and Peipert, J. F. (2003). What your statistician never told you about P-values. J Am Assoc Gynecol Laparosc, 10, 439-444.
- Pocock, S. J., McMurray, J. J., and Collier, T. J. (2015). Making Sense of Statistics in Clinical Trial Reports: Part 1 of a 4-Part Series on Statistics for Clinical Trials. J. Am. Coll. Cardiol., 66(22), 2536–2549.
- Sterne, J. A. and Smith, G. D. (2001). Sifting the evidence what's wrong with significance tests? British Medical Journal, 322(7280), 226–231.
- Stone, G. W. and Pocock, S. J. (2010). Randomized trials, statistics, and clinical inference. J. Am. Coll. Cardiol., 55(5), 428-431.

Kaspar Rufibach, Merck KGaA #24 / 27

Thank you for your attention.

kaspar.rufibach@merckgroup.com

Slides can be downloaded on www.kasparrufibach.ch

Kaspar Rufibach, Merck KGaA #25 / 27

Backup

Inferential concepts

Feature	Neyman-Pearson	Fisher p-value	Bayes
Specifies H ₀	Ø	\otimes	\odot
Specifies H_1	\odot	(X)	\odot
Binary decision	\odot	(X)	\sim
Operating characteristics	\otimes	⊗	\otimes

Kaspar Rufibach, Merck KGaA #27 / 27

 $\ensuremath{\mathsf{R}}$ version and packages used to generate these slides:

R version: R version 4.4.3 (2025-02-28 ucrt)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base Other packages: reporttools / xtable

This document was generated on 2025-09-25 at 21:32:42.