Methodological aspects in the analysis of adverse events in time-to-event data

Regina Stegherr ${ }^{1}$, Jan Beyersmann ${ }^{1}$, Claudia Schmoor², Michael Luebbert ${ }^{3}$, Tim Friede ${ }^{4}$

${ }^{1}$ Institute of Statistics, Ulm University;
${ }^{2}$ Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
${ }^{3}$ Hematology, Oncology, and Stem-Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
${ }^{4}$ Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

21.03.2019
regina.stegherr@uni-ulm.de

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion

Varying follow-up times and censoring present Incidence proportion leads to underestimation Competing events (death, progression,...) present (Allignol et al. 2016)

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion
- But:
- Varying follow-up times and censoring present
- Incidence proportion leads to underestimation
- Incidence density (incidence rate) (Bender et al. 2016): constant hazards assumption (Kraemer, 2009), does not estimate AE probability
- Non-parametric Kaplan-Meier estimator of AE probability accounts for censoring

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion
- But:
- Varying follow-up times and censoring present
- Incidence proportion leads to underestimation
- Incidence density (incidence rate) (Bender et al. 2016): constant hazards assumption (Kraemer, 2009), does not estimate AE probability
- Non-parametric Kaplan-Meier estimator of AE probability accounts for censoring
- But:
- Competing events (death, progression,...) present (Allignol et al. 2016)
- Parametric estimator based on incidence density and non-parametric Kaplan-Meier estimator both lead to overestimation
- Non-parametric Aalen-Johansen estimator is an unbiased estimator of the AE probability
- Parametric estimator of the AE probability can be constructed from the AE and competing events (CE) hazards under constant hazard assumption

In this presentation

We aim to

- compare the different estimators quantifying the adverse event probability to the gold standard Aalen-Johansen estimator
- compare different methods for obtaining the variances of the estimators
- compare them not only at the maximal event time but also at two specific quantiles of the observed times as these variances may be large at the end of follow-up
- investigate the relative importance of the following three sources of bias:
- censoring
- competing events
- model misspecifications
to answer the following questions
(1) Is ignoring competing events worse than misspecifying the model (falsely assuming constant hazards)?
(2) How appropriate is the use of the incidence proportion to quantify the AE risk?

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\# \text { of patients in group } A}$

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\# \text { of patients in group } A}$
- Incidence density: $\operatorname{ID}_{\mathrm{A}}(\tau)=\frac{\text { \# AE in }[0, \tau] \text { in group } A}{\text { patient-time }}$ patient-time at risk in group A (restricted by τ)

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\# \text { of patients in group } A}$
- Incidence density: $\mathrm{ID}_{\mathrm{A}}(\tau)=\frac{\text { \# AE in }[0, \tau] \text { in group } A}{\text { patient-time at risk in group } A(\text { restricted by } \tau \text {) }}$ Probability Transform (1-Kaplan-Meier like): $1-\exp \left(-\mathrm{ID}_{\mathrm{A}}(\tau) \cdot \tau\right)$

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } \mathrm{A}}{\# \text { of patients in group } \mathrm{A}}$
- Incidence density: $\mathrm{ID}_{\mathrm{A}}(\tau)=\frac{\text { \# AE in }[0, \tau] \text { in group } A}{\text { patient-time at risk in group } A(\text { restricted by } \tau)}$ Probability Transform (1-Kaplan-Meier like): $1-\exp \left(-\mathrm{ID}_{\mathrm{A}}(\tau) \cdot \tau\right)$
- 1 - Kaplan-Meier: also censors competing event
patient-time at risk in group A (restricted by τ)

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\# \text { of patients in group } A}$
- Incidence density: $\mathrm{ID}_{\mathrm{A}}(\tau)=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\text { patient-time at risk in group } A(\text { restricted by } \tau)}$ Probability Transform (1-Kaplan-Meier like): $1-\exp \left(-\mathrm{ID}_{\mathrm{A}}(\tau) \cdot \tau\right)$
- 1 - Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard):

$$
\operatorname{CIF}_{A}(\tau)=\sum_{u \in(0, \tau]} \prod_{v \in(0, u)}\left(1-\Delta \hat{\Lambda}_{A}(v)-\Delta \hat{\bar{\Lambda}}_{A}(v)\right) \Delta \hat{\Lambda}_{A}(u)
$$

Estimating the AE probability at follow-up time point τ

Consider the situation of a clinical trial comparing two treatments A and B

- Incidence proportion: $\mathrm{IP}_{\mathrm{A}}=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } A}{\# \text { of patients in group } A}$
- Incidence density: $\operatorname{ID}_{A}(\tau)=\frac{\text { \#AE in }[0, \tau] \text { in group } A}{\text { patient-time at risk in group } A(\text { restricted by } \tau)}$ Probability Transform (1-Kaplan-Meier like): $1-\exp \left(-\mathrm{ID}_{\mathrm{A}}(\tau) \cdot \tau\right)$
- 1 - Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard):
$\mathrm{CIF}_{\mathrm{A}}(\tau)=\sum_{\mathfrak{u} \in(0, \tau]} \prod_{v \in(0, \mathfrak{u})}\left(1-\Delta \hat{\Lambda}_{\mathrm{A}}(v)-\Delta \hat{\bar{\Lambda}}_{\mathrm{A}}(v)\right) \Delta \hat{\Lambda}_{\mathrm{A}}(\mathrm{u})$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{\mathrm{ID}_{\mathrm{A}}(\tau)}{\mathrm{ID}_{\mathrm{A}}(\tau)+{\overline{I D_{A}}(\tau)}\left(1-\exp \left(-\tau \cdot\left[\mathrm{ID}_{\mathrm{A}}(\tau)+\overline{\mathrm{ID}}_{\mathrm{A}}(\tau)\right]\right)\right), ~(1)}$ with $\overline{\mathrm{ID}}_{\mathrm{A}}(\tau)=\frac{\# \text { competing event in }[0, \tau] \text { in group } \mathrm{A}}{\text { patient-time at risk in group } \mathrm{A}(\text { restricted by } \tau)}$

Variances of estimators

Model based variances:

- Incidence proportion: $\hat{s}_{A}^{2}=\left(\mathrm{IP}_{\mathrm{A}}(\tau) \cdot\left(1-\mathrm{IP}_{\mathrm{A}}(\tau)\right)\right) / \mathrm{n}_{\mathrm{A}}$
- Probability transform incidence density: (similar to KM) $\hat{s}_{A}^{2}=\tau^{2} \cdot \exp \left(-\tau \cdot \mathrm{ID}_{\mathrm{A}}(\tau)\right)^{2} \cdot \widehat{\operatorname{var}}\left(\mathrm{ID}_{\mathrm{A}}(\tau)\right)$
- 1- Kaplan-Meier: Greenwood variance estimator
- Aalen-Johansen estimator: Greenwood-type variance estimator (Allignol et al. 2010)
- Probability transform incidence density accounting for competing events: Using $\widehat{\operatorname{var}}\left(\mathrm{ID}_{\mathrm{A}}(\tau)\right)=\frac{\# \mathrm{AE} \text { in }[0, \tau] \text { in group } \mathrm{A}}{(\text { patient-time at risk in group } \mathrm{A}(\text { restricted by } \tau))^{2}}$ and $\widehat{\operatorname{var}}\left(\overline{\mathrm{ID}}_{\mathrm{A}}(\tau)\right)$ analogous and apply delta-method

Alternative: Use bootstrap to obtain empirical variances as there may be problems for the variances of the parametric estimators (Hjort, 1992)

Varying follow-up times

- Incidence proportion usually only calculated at the end of follow-up (does not account for censoring)
- Evalutate estimators at end of follow-up (all data) in each group
- To account for different follow-up in groups A and B:
- Evaluate estimators at $\tau=\min \left(\tau_{A}, \tau_{B}\right)(P 100)$, with τ_{A} and τ_{B} largest observed event time in group A and B, respectively
- As estimators (e.g. Kaplan-Meier) at the end of follow-up may have larger variability due to small numbers still at risk (Pocock et al. 2002):
- Evaluate estimators at earlier time point when more patients are still at risk
- Evaluate estimators at $\tilde{\tau}=\min \left(\tilde{\tau}_{A}, \tilde{\tau}_{B}\right)$, with $\tilde{\tau}_{A}(p)$ and $\tilde{\tau}_{B}(p)$ defined as event time when $p \cdot 100 \%$ of all patients in group A and group B, respectively, are still at risk , e.g., $p=0.9$ (P9o) and $p=0.6$ (P60)

Example - Oncology trial (hardly any censoring)

- Incidence proportion
- Probability transform incidence density
- 1-Kaplan-Meier
- Probability transform
- incidence density CE
- Aalen-Johansen
- Probability transform incidence density and 1-Kaplan-Meier overestimate
- Incidence proportion, probability transform incidence Density accounting for CE and Aalen-Johansen close

Example - Oncology trial

Variances of different estimates at "all data" and P60

FU time	estimator	model based variance A	Bootstrap variance A	model based variance B	Bootstrap variance B
all data	Incidence proportion	0.0024	0.0025	0.0020	0.0019
all data	Probability transform incidence density	0.0018	0.0036	0.0014	0.0034
all data	1-Kaplan-Meier all data Probability transform incidence density CE	0.0054	0.0026	0.0026	0.0419
all data	Aalen-Johansen	0.0024	0.0025	0.0021	0.0509
P60	Incidence proportion	0.0023	0.0022	0.0018	0.0020
P60 Probability transform	0.0030	0.0032	0.0025	0.0023	
P60	incidence density	0.0026	0.0024	0.0021	0.0018
P60	1-Kaplan-Meier Probability transform incidence density CE	0.0024	0.0027	0.0017	0.0017
P60	Aalen-Johansen	0.0023	0.0022	0.0018	0.0016

Simulations

Investigate the effect of

1. constant vs non-constant hazards
2. censoring vs no censoring

by simulating $\mathrm{N}=1000$ datasets of the following scenarios with parameter chosen similar to the data example

Scenario	$\alpha_{01}^{\mathrm{A}}(\mathrm{t})$	$\alpha_{02}^{\mathrm{A}}(\mathrm{t})$	$\alpha_{01}^{\mathrm{B}}(\mathrm{t})$	$\alpha_{02}^{\mathrm{B}}(\mathrm{t})$	$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{\mathrm{B}}$	censoring
(1) constant	0.00265	0.0424	0.00246	0.0530	200	no
(2) constant	0.00265	0.0424	0.00246	0.0530	400	25%
(3) time-dependent	$\frac{1}{2} \mathrm{t}$	$\frac{1.8}{\mathrm{t}+2}$	$\frac{1}{8} \mathrm{t}$	$\frac{1.8}{\mathrm{t}+2}$	400	20%

Scenario 1: constant hazards, no censoring

Scenario 1: constant hazards, no censoring

Scenario 2: constant hazards, with censoring

estimator

Scenario 2: constant hazards, with censoring

Scenario 3: time-dependent hazards, with censoring

Scenario 3: time-dependent hazards, with censoring

Simulations: Summary

- Probability transform of incidence density and 1-Kaplan-Meier overestimate AE probability (Scenario 1,2,3)
- Incidence proportion underestimates in censored scenarios (Scenario 2,3)
- Here, incidence density accounting for competing events slightly underestimates compared to Aalen-Johansen estimator (Scenario 3)
- Bootstrapped variances of incidence density and 1-Kaplan-Meier with outliers in absence of censoring (Scenario 1)
- Variance of non-parametric estimators comparable to the one of parametric estimators in absence of censoring; With censoring slightly increased variance for non-parametric estimator (Scenario 1,2)

Discussion

(1) Ignoring competing events more of a problem than model misspecifications (falsely assuming constant hazards)
(2) Incidence proportion underestimates in presence of censoring

- Only small differences in AE probability estimators for evaluation at 60% quantile
- Ongoing and future analyses: Rare AEs, frequency categories, different constellations of time-varying hazards, group comparisons, estimators of hazard ratio, ...
- Survival analysis for AdVerse events with VarYing follow-up times - SAVVY project (academic and pharmaceutical): Aim to improve guidelines on reporting the incidence of adverse events with varying follow-up times Empirical study including randomized controlled clinical trials from several companies and summarizing the results via meta-analysis

References

- Allignol, A., Beyersmann, J. and Schmoor, C. (2016). Statistical issues in the analysis of adverse events in time-to-event data. Pharmaceutical Statistics 15, 297-305.
- Allignol, A. , Schumacher, M. and Beyersmann, J. (2010). A Note on Variance Estimation of the Aalen-Johansen Estimator of the Cumulative Incidence Function in Competing Risks, with a View towards Left-Truncated Data. Biometrical Journal, 52, 126-137.
- Bender, R., Beckmann, L., and Lange, S. (2016). Biometrical issues in the analysis of adverse events within the benefit assessment of drugs. Pharmaceutical Statistics 15, 292-296.
- Hjort, N. (1992). On Inference in Parametric Survival Data Models. International Statistical Review 60, 355-387.
- Kraemer, H. C. (2009). Events per person time (incidence rate): A misleading statistic? Statistics in Medicine, 28, 1028-1039.
- Pocock, S. J., Clayton, T. C. and Altman, D. G. (2002). Survival plots of time-to-event outcomes in clinical trials: good practice and pitfalls. The Lancet, 359, 1686-1689.
- Unkel, S., Amiri, M., Benda, N., Beyersmann, J., Knoerzer, D., Kupas, K., Langer, F., Leverkus, F., Loos, A., Ose, C., Proctor, T., Schmoor, C., Schwenke, C., Skipka, G., Unnebrink, K., Voss, F. and Friede, T. (2018). On estimands and the analysis of adverse events in the presence of varying follow-up times within the benefit assessment of therapies, Pharmaceutical Statistics. Pharmaceutical Statistics, in press.

Back-Up: Example - Oncology trial

Cumulative hazards

Back-Up: Example - Oncology trial

Variances at P100

FU time	estimator	model based variance A	Bootstrap variance A	model based variance B	Bootstrap variance B
P100	Incidence prop	0.0024	0.0025	0.0020	0.0019
P100	Incidence dens	0.0018	0.0041	0.0025	0.0045
P100	1-Kaplan-Meier	0.0054	0.0060	0.0062	0.0067
P100	Incidence dens CE	0.0026	0.0027	0.0022	0.0021
P100	Aalen-Johansen	0.0024	0.0025	0.0020	0.0019

Back-Up

Simulations - Scenario 3 - Hazard plot

black:time-dep (weibull) for AE in A blue: time-dep (weibull) for AE in B red: time-dep for CE in both

time

