

Methodological aspects in the analysis of adverse events in time-to-event data

Regina Stegherr¹, Jan Beyersmann¹, Claudia Schmoor², Michael Luebbert ³, Tim Friede⁴

¹Institute of Statistics, Ulm University;

²Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany ³Hematology, Oncology, and Stem-Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany

⁴Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

21.03.2019

regina.stegherr@uni-ulm.de

Methodological aspects in the analysis of adverse events in time-to-event data

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion
- But:
 - Varying follow-up times and censoring present
 - Incidence proportion leads to underestimation
- Incidence density (incidence rate) (Bender et al. 2016): constant hazards assumption (Kraemer, 2009), does not estimate AE probability
- Non-parametric **Kaplan-Meier** estimator of AE probability accounts for censoring
- But:
 - **Competing events** (death, progression,...) present (Allignol et al. 2016)
 - Parametric estimator based on incidence density and non-parametric Kaplan-Meier estimator both lead to **overestimation**
- Non-parametric **Aalen-Johansen** estimator is an unbiased estimator of the AE probability
- Parametric estimator of the AE probability can be constructed from the AE and competing events (CE) hazards under constant hazard assumption

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion
- But:
 - Varying follow-up times and censoring present
 - Incidence proportion leads to underestimation
- Incidence density (incidence rate) (Bender et al. 2016): constant hazards assumption (Kraemer, 2009), does not estimate AE probability
- Non-parametric **Kaplan-Meier** estimator of AE probability accounts for censoring
- But:
 - **Competing events** (death, progression,...) present (Allignol et al. 2016)
 - Parametric estimator based on incidence density and non-parametric Kaplan-Meier estimator both lead to **overestimation**
- Non-parametric Aalen-Johansen estimator is an unbiased estimator of the AE probability
- Parametric estimator of the AE probability can be constructed from the AE and competing events (CE) hazards under constant hazard assumption

Background: Safety Analyses

- Safety in terms of adverse events (AEs) is a relevant aspect of risk-benefit assessment of therapies (Unkel et al. 2018)
- Probability of an AE often estimated by (incidence) proportion
- But:
 - Varying follow-up times and censoring present
 - Incidence proportion leads to underestimation
- Incidence density (incidence rate) (Bender et al. 2016): constant hazards assumption (Kraemer, 2009), does not estimate AE probability
- Non-parametric **Kaplan-Meier** estimator of AE probability accounts for censoring
- But:
 - **Competing events** (death, progression,...) present (Allignol et al. 2016)
 - Parametric estimator based on incidence density and non-parametric Kaplan-Meier estimator both lead to **overestimation**
- Non-parametric Aalen-Johansen estimator is an unbiased estimator of the AE probability
- Parametric estimator of the AE probability can be constructed from the AE and competing events (CE) hazards under constant hazard assumption

In this presentation

We aim to

- compare the different estimators quantifying the adverse event probability to the gold standard Aalen-Johansen estimator
- compare different methods for obtaining the variances of the estimators
- compare them not only at the maximal event time but also at two specific quantiles of the observed times as these variances may be large at the end of follow-up
- investigate the relative importance of the following three sources of bias:
 - censoring
 - competing events
 - model misspecifications
- to answer the following questions
 - (1) Is ignoring competing events worse than misspecifying the model (falsely assuming constant hazards)?
 - (2) How appropriate is the use of the incidence proportion to quantify the AE risk?

- Incidence proportion: $IP_A = \frac{\#\,AE \text{ in } [0,\tau] \text{ in group } A}{\#\,of \text{ patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\text{patient-time at risk in group } A (restricted by } \tau)$ Probability Transform (1-Kaplan-Meier like): $1 - \exp(-ID_A(\tau) \cdot \tau)$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_{A}(\tau)}{ID_{A}(\tau) + ID_{A}(\tau)} \left(1 - \exp(-\tau \cdot [ID_{A}(\tau) + \overline{ID}_{A}(\tau)])\right)$ with $\overline{ID}_{A}(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A}}$

- Incidence proportion: $IP_A = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\# \text{ of patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\# AE \text{ in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by }\tau)}$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_{A}(\tau)}{ID_{A}(\tau) + ID_{A}(\tau)} \left(1 - \exp(-\tau \cdot [ID_{A}(\tau) + \overline{ID}_{A}(\tau)])\right)$ with $\overline{ID}_{A}(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by } \tau)}$

- Incidence proportion: $IP_A = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\# \text{ of patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\#AE \text{ in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by }\tau)}$ Probability Transform (1-Kaplan-Meier like): $1 - \exp(-ID_A(\tau) \cdot \tau)$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_{A}(\tau)}{ID_{A}(\tau)+ID_{A}(\tau)} \left(1 - \exp(-\tau \cdot [ID_{A}(\tau) + \overline{ID}_{A}(\tau)])\right)$ with $\overline{ID}_{A}(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by } \tau)}$

- Incidence proportion: $IP_A = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\# \text{ of patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\#AE \text{ in } [0, \tau] \text{ in group } A}{\text{patient-time at risk in group } A (restricted by } \tau)}$ Probability Transform (1-Kaplan-Meier like): $1 - \exp(-ID_A(\tau) \cdot \tau)$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_A(\tau)}{ID_A(\tau) + ID_A(\tau)} \left(1 - \exp(-\tau \cdot [ID_A(\tau) + \overline{ID}_A(\tau)])\right)$ with $\overline{ID}_A(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group } A}{\text{patient-time at risk in group } A}$ (restricted by τ)

- Incidence proportion: $IP_A = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\# \text{ of patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\#AE \text{ in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by }\tau)}$ Probability Transform (1-Kaplan-Meier like): $1 - \exp(-ID_A(\tau) \cdot \tau)$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_{A}(\tau)}{ID_{A}(\tau) + ID_{A}(\tau)} \left(1 - \exp(-\tau \cdot [ID_{A}(\tau) + \overline{ID}_{A}(\tau)])\right)$ with $\overline{ID}_{A}(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group A}}{\text{patient-time at risk in group A (restricted by } \tau)}$

- Incidence proportion: $IP_A = \frac{\# AE \text{ in } [0, \tau] \text{ in group } A}{\# \text{ of patients in group } A}$
- Incidence density: $ID_A(\tau) = \frac{\#AE \text{ in } [0, \tau] \text{ in group } A}{\text{patient-time at risk in group } A (restricted by } \tau)}$ Probability Transform (1-Kaplan-Meier like): $1 - \exp(-ID_A(\tau) \cdot \tau)$
- 1 Kaplan-Meier: also censors competing event
- Aalen-Johansen estimator (Gold standard): $CIF_{A}(\tau) = \sum_{u \in (0,\tau]} \prod_{\nu \in (0,u)} \left(1 - \Delta \hat{\Lambda}_{A}(\nu) - \Delta \hat{\overline{\Lambda}}_{A}(\nu)\right) \Delta \hat{\Lambda}_{A}(u)$
- Probability transform of incidence density accounting for competing events (Aalen-Johansen like): $\frac{ID_A(\tau)}{ID_A(\tau) + I\overline{D}_A(\tau)} \left(1 exp(-\tau \cdot [ID_A(\tau) + \overline{ID}_A(\tau)])\right)$ with $\overline{ID}_A(\tau) = \frac{\# \text{ competing event in } [0, \tau] \text{ in group } A}{\text{patient-time at risk in group } A (restricted by } \tau)$

Variances of estimators

Model based variances:

- Incidence proportion: $\hat{s}_A^2 = (\mathrm{IP}_A(\tau) \cdot (1-\mathrm{IP}_A(\tau)))/n_A$
- Probability transform incidence density: (similar to KM) $\hat{s}_A^2 = \tau^2 \cdot exp(-\tau \cdot ID_A(\tau))^2 \cdot \widehat{var}(ID_A(\tau))$
- 1- Kaplan-Meier: Greenwood variance estimator
- Aalen-Johansen estimator: Greenwood-type variance estimator (Allignol et al. 2010)
- Probability transform incidence density accounting for competing events: $Using \, \widehat{var}(ID_A(\tau)) = \frac{\# AE \text{ in } [0, \tau] \text{ in group A}}{\left(\text{patient-time at risk in group A (restricted by } \tau)\right)^2}$ and $\widehat{var}(\overline{ID}_A(\tau))$ analogous and apply delta-method

Alternative: Use bootstrap to obtain empirical variances as there may be problems for the variances of the parametric estimators (Hjort, 1992)

Varying follow-up times

- Incidence proportion usually only calculated at the end of follow-up (does not account for censoring)
 - Evalutate estimators at end of follow-up (all data) in each group
- To account for different follow-up in groups A and B:
 - Evaluate estimators at $\tau = min(\tau_A, \tau_B)$ (P100), with τ_A and τ_B largest observed event time in group A and B, respectively
- As estimators (e.g. Kaplan-Meier) at the end of follow-up may have larger variability due to small numbers still at risk (Pocock et al. 2002):
 - Evaluate estimators at earlier time point when more patients are still at risk
 - Evaluate estimators at $\tilde{\tau} = \min(\tilde{\tau}_A, \tilde{\tau}_B)$, with $\tilde{\tau}_A(p)$ and $\tilde{\tau}_B(p)$ defined as event time when $p \cdot 100\%$ of all patients in group A and group B, respectively, are still at risk, e.g., p = 0.9 (P90) and p = 0.6 (P60)

Example - Oncology trial

Example - Oncology trial (hardly any censoring)

- Probability transform incidence density and 1-Kaplan-Meier overestimate
- Incidence proportion, probability transform incidence Density accounting for CE and Aalen-Johansen close

Example - Oncology trial

Variances of different estimates at "all data" and P60

FU time	estimator	model based variance A	Bootstrap variance A	model based variance B	Bootstrap variance B
all data	Incidence proportion	0.0024	0.0025	0.0020	0.0019
all data	Probability transform incidence density	0.0018	0.0036	0.0014	0.0034
all data	1-Kaplan-Meier	0.0054	0.0060	0.0419	0.0509
all data	Probability transform incidence density CE	0.0026	0.0026	0.0021	0.0020
all data	Aalen-Johansen	0.0024	0.0025	0.0022	0.0020
P60	Incidence proportion	0.0023	0.0022	0.0018	0.0016
P60	Probability transform incidence density	0.0030	0.0032	0.0025	0.0023
P60	1-Kaplan-Meier	0.0026	0.0024	0.0021	0.0018
P60	Probability transform incidence density CE	0.0024	0.0027	0.0017	0.0017
P60	Aalen-Johansen	0.0023	0.0022	0.0018	0.0016

Investigate the effect of

- 1. constant vs non-constant hazards
- 2. censoring vs no censoring

by simulating N= 1000 datasets of the following scenarios with parameter chosen similar to the data example

Scenario	$\alpha_{01}^{A}(t)$	$\alpha_{02}^{A}(t)$	$\alpha^{\rm B}_{01}(t)$	$\alpha^{B}_{02}(t)$	$n_A = n_B$	censoring
(1) constant	0.00265	0.0424	0.00246	0.0530	200	no
(2) constant	0.00265	0.0424	0.00246	0.0530	400	25%
(3) time-dependent	$\frac{1}{2}t$	$\frac{1.8}{t+2}$	$\frac{1}{8}t$	$\frac{1.8}{t+2}$	400	20%
	2	172	0	ιτz		

Scenario 1: constant hazards, no censoring

Scenario 1: constant hazards, no censoring

Methodological aspects in the analysis of adverse events in time-to-event data

Scenario 2: constant hazards, with censoring

Scenario 2: constant hazards, with censoring

Methodological aspects in the analysis of adverse events in time-to-event data

Scenario 3: time-dependent hazards, with censoring

Scenario 3: time-dependent hazards, with censoring

Methodological aspects in the analysis of adverse events in time-to-event data

Simulations: Summary

- Probability transform of incidence density and 1-Kaplan-Meier overestimate AE probability (Scenario 1,2,3)
- Incidence proportion underestimates in censored scenarios (Scenario 2,3)
- Here, incidence density accounting for competing events slightly underestimates compared to Aalen-Johansen estimator (Scenario 3)
- Bootstrapped variances of incidence density and 1-Kaplan-Meier with outliers in absence of censoring (Scenario 1)
- Variance of non-parametric estimators comparable to the one of parametric estimators in absence of censoring; With censoring slightly increased variance for non-parametric estimator (Scenario 1,2)

Discussion

- (1) Ignoring competing events more of a problem than model misspecifications (falsely assuming constant hazards)
- (2) Incidence proportion underestimates in presence of censoring
 - Only small differences in AE probability estimators for evaluation at 60% quantile
 - Ongoing and future analyses: Rare AEs, frequency categories, different constellations of time-varying hazards, group comparisons, estimators of hazard ratio, ...
 - Survival analysis for AdVerse events with VarYing follow-up times SAVVY project (academic and pharmaceutical): Aim to improve guidelines on reporting the incidence of adverse events with varying follow-up times -Empirical study including randomized controlled clinical trials from several companies and summarizing the results via meta-analysis

References

- Allignol, A., Beyersmann, J. and Schmoor, C. (2016). Statistical issues in the analysis of adverse events in time-to-event data. *Pharmaceutical Statistics* **15**, 297–305.
- Allignol, A., Schumacher, M. and Beyersmann, J. (2010). A Note on Variance Estimation of the Aalen-Johansen Estimator of the Cumulative Incidence Function in Competing Risks, with a View towards Left-Truncated Data. *Biometrical Journal*, **52**, 126–137.
- Bender, R., Beckmann, L., and Lange, S. (2016). Biometrical issues in the analysis of adverse events within the benefit assessment of drugs. *Pharmaceutical Statistics* **15**, 292–296.
- Hjort, N. (1992). On Inference in Parametric Survival Data Models. *International Statistical Review* **60**, 355–387.
- Kraemer, H. C. (2009). Events per person time (incidence rate): A misleading statistic? *Statistics in Medicine*, **28**, 1028–1039.
- Pocock, S. J., Clayton, T. C. and Altman, D. G. (2002). Survival plots of time-to-event outcomes in clinical trials: good practice and pitfalls. *The Lancet*, **359**, 1686–1689.
- Unkel, S., Amiri, M., Benda, N., Beyersmann, J., Knoerzer, D., Kupas, K., Langer, F., Leverkus, F., Loos, A., Ose, C., Proctor, T., Schmoor, C., Schwenke, C., Skipka, G., Unnebrink, K., Voss, F. and Friede, T. (2018). On estimands and the analysis of adverse events in the presence of varying follow-up times within the benefit assessment of therapies, Pharmaceutical Statistics. *Pharmaceutical Statistics*, in press.

References

Back-Up: Example - Oncology trial Cumulative hazards

Back-Up: Example - Oncology trial

FU time	estimator	model based variance A	Bootstrap variance A	model based variance B	Bootstrap variance B
P100	Incidence prop	0.0024	0.0025	0.0020	0.0019
P100	Incidence dens	0.0018	0.0041	0.0025	0.0045
P100	1-Kaplan-Meier	0.0054	0.0060	0.0062	0.0067
P100	Incidence dens CE	0.0026	0.0027	0.0022	0.0021
P100	Aalen-Johansen	0.0024	0.0025	0.0020	0.0019

Back-Up Simulations - Scenario 3 - Hazard plot

black:time-dep (weibull) for AE in A blue: time-dep (weibull) for AE in B red: time-dep for CE in both

time Methodological aspects in the analysis of adverse events in time-to-event data